Recent developments in carbon nanotubes-based perovskite solar cells with boosted efficiency and stability

Author:

Jaffri Shaan Bibi1,Ahmad Khuram Shahzad1,Thebo Khalid Hussain2,Rehman Faisal3

Affiliation:

1. Department of Environmental Sciences , Fatima Jinnah Women University , The Mall , 46000 , Rawalpindi , Pakistan

2. University of Chinese Academy of Sciences (UCAS) , Beijing, People’s Republic of China

3. Department of Electrical Engineering , The Sukkur IBA University , Sukkur , Sindh , Pakistan

Abstract

Abstract Perovskite solar cells (PSC) comprising of organic–inorganic lead halide composition have been considered as the future candidates for substituting the costly crystalline silicon-based solar cells if the challenges of efficiency and stability are adequately addressed. PSCs have been known for the employment of costly materials serving as electron transport, hole transport layers and back contact electrode such as gold, silver, or aluminum, needing thermal deposition in high vacuum ambiance. Metallic electrodes have been observed as not robust and thus, prone to quick degradation hindering the overall photovoltaic functionality of PSC devices. Carbon-modified PSCs via utilization of carbon nanotubes (CNTs) have been a favorable choice in terms of longer stability and efficiency. Considering the overpowering potential of CNTs in transforming PSC device functionality, current review has been designed to elucidate the most recent progressions carried out in utilization of CNTs in PSCs. Furthermore, this review focussed a critical view on the utilization of CNTs-based PSCs for lower fill factors and other photovoltaic parameters in addition to the account of ways to solve these concerns. Photovoltaic community researchers need to develop cost effective methods for resolving the lower efficiencies and fill factors associated with use of CNTs and can further explore different novel materials to successfully modify CNTs for employment in PSCs.

Publisher

Walter de Gruyter GmbH

Subject

Physical and Theoretical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3