Fabrication and characterization of Fe2O3, Bi2O3 and BiFeO3 and evaluation of their photo catalytic performances on degradation of methylene blue dye

Author:

Akram Fiza1,Saeed Muhammad1,Akhtar Javaid2,Raza Naqvi Syed Ali1,Haq Atta ul1

Affiliation:

1. Department of Chemistry , Government College University , Faisalabad , Pakistan

2. Department of Chemical & Material Engineering , College of Engineering, King Abdul Aziz University , Jeddah , Kingdom of Saudi Arabia

Abstract

Abstract This study reports the fabrication of Fe2O3, Bi2O3, and BiFeO3, characterization and evaluation of the photocatalytic performances for methylene blue dye degradation. The materials were synthesized by precipitation method and characterized by scanning electron microscopy, X-ray diffraction, energy dispersive X-rays analyses, and Fourier transform infrared analyses. The photocatalytic activities of Fe2O3, Bi2O3, and BiFeO3 were compared by performing degradation experiments with 50 mL of 100 mg/L methylene blue solution. The as-prepared BiFeO3 was found as 2.4 times and 1.7 times more effective than Fe2O3 and Bi2O3, with a 79, 47, and 57% catalytic activity, respectively. The degradation of methylene blue over the BiFeO3 catalyst was optimized in terms of pH, catalyst dosage, temperature, and methylene blue concentration. The Eley–Rideal mechanism was proposed to describe the reaction kinetics in terms of the first order and second order kinetics model. Activation energy E (kJ/mol), enthalpy ΔH (kJ/mol), entropy ΔS (J/mol) and free energy ΔG (kJ/mol) were calculated as 20.8, 18.2, 197.5 and −45.3 respectively. The negative value of free energy shows that photodegradation is favored in present conditions.

Publisher

Walter de Gruyter GmbH

Subject

Physical and Theoretical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3