Physicochemical investigations on the interaction of an anionic surfactant with cellulose based polymer microgel

Author:

Khan Abbas12ORCID,Khan Sumayya1,Khan Nazish1,Naz Sumayya1,Bououdina Mohamed2,Rehman Noor3,Humayun Muhammad2,Shah Nasrullah1,Anwar Natasha1,Ali Hazrat4

Affiliation:

1. Department of Chemistry , Abdul Wali Khan University , Mardan 23200 , KP , Pakistan

2. Department of Mathematics and Sciences, Faculty of Humanities and Sciences , Prince Sultan University , Riyadh , Saudi Arabia

3. Department of Chemistry , Shaheed Benazir Bhutto University , Peshawar , Sheringal Dir (U) , Pakistan

4. Department of Chemistry , University of Mianwali , Mianwali , Punjab , Pakistan

Abstract

Abstract This work focuses on the interaction of cellulose-based colloidal microgel dispersions with the anionic surfactant sodium dodecyl sulfate (SDS) at different concentrations. First, a Cellulose-P(NIPAAm-MAA)-based responsive microgel sample was prepared by a radical polymerization method using a one-pot process. The samples thus obtained were purified, characterized and used to study microgel-surfactant interactions. To this end, SDS solutions with different concentrations were prepared and the interactions of SDS in the premicellar and micelle regions with polymer microgel were investigated using different physicochemical techniques. Experiments were also performed at different temperatures to obtain the degree of binding of SDS to microgel in gel surfactant mixtures. Due to the temperature-sensitive properties of microgel, we observed significant changes in various properties of microgel-surfactant mixtures when the solution temperature changed. The overall results showed that various experimental variables, such as the polymer gel/surfactant ratio and temperature, affect the gel–surfactant interaction quantitatively and qualitatively. With increasing surfactant concentration, conductance, viscosity and absorbance values ​​increased, but a decrease in surface tension was observed. This is due to the adsorption of SDS at the air-water interface. The micellar activity of surfactants is enhanced by the addition of microgels. It was found that the strength and nature of the interaction depended not only on the gel/surfactant ratio, solvent type and test temperature, but also on the chemical structure of the surfactant used. Furthermore, the visual stability of the colloidal particles in the mixture of microgel and SDS was also noticeable over time.

Funder

Abdul Wali Khan University Mardan

Prince Sultan University

Publisher

Walter de Gruyter GmbH

Subject

Physical and Theoretical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3