Efficiency assessment of hydrothermally synthesized Mn2+/3+ modified LaCoO3 nanoparticles for advanced wastewater remediation

Author:

Sahadevan Jhelai12,Suresh Sudhi2,Kavu Kulathuraan3,Periyasamy Velusamy4,Sankaran Esakki Muthu5,Kim Ikhyun6,Hasan Imran7,Paramasivam Sivaprakash6

Affiliation:

1. Centre for Biophotonics and Technology , Karpagam Academy of Higher Education , Coimbatore 641021 , India

2. Department of Physics , Karpagam Academy of Higher Education , Coimbatore 641021 , India

3. Department of Physics , A.P.A College of Arts and Culture , Palani , 624601 , Tamil Nadu , India

4. Department of Physics , Thiagarajar College of Engineering , Thiruparankundram , Madurai , Tamil Nadu , India

5. Department of Physics, Centre for Material Science , Karpagam Academy of Higher Education , Coimbatore 641021 , India

6. Department of Mechanical Engineering , Keimyung University , Daegu 42601 , South Korea

7. Department of Chemistry, College of Science , King Saud University , Riyadh , 11451 , Saudi Arabia

Abstract

Abstract The use of light and a particular material known as a photocatalyst to degrade hazardous dyes in wastewater is an exciting new development in the field of photocatalytic dye degradation. In this study we investigated the characteristic properties and photocatalytic dye degradation of manganese doped lanthanum cobalt (LaCoO3 (LCO)) nanoparticles (NPs). The NPs were synthesised using hydrothermal synthesis techniques and analysed its properties by utilising diverse technologies such as XRD, FeSEM with EDAX, Raman Spectroscopy, Photoluminescence spectroscopy and UV-DRS. From XRD analysis we found that the Mn doped LCO NPs have single phase rhombohedral crystal structures with R 3 $\bar{3}$ c space group and doping cause expansion of lattice. Surface morphology of the synthesised NPs was found to be altered from spherical to spine/rod like microstructure when Mn is incorporated to LCO lattice. PL spectroscopies show broad photoemission at 360–490 nm after absorbing 310 nm light. From the UV–Vis spectroscopy the optical bandgap of the materials around 4.5 eV, indicating they can absorb visible light effectively. LCO can absorb both UV and visible light, expanding its potential for outdoor applications under natural sunlight. Doping LCO with other elements can modify its bandgap and improve its activity towards specific dyes. LCO exhibits good chemical and thermal stability, making it reusable for multiple cycles. While LCO shows promise as a visible light photocatalyst for dye degradation, its efficiency can vary significantly depending on the specific conditions. We tested Congo Red (CR) dye with prepared photocatalyst to study how well they breakdown in visible light. Studies have reported degradation rates for different dyes ranging from 50 to 90 % within an hour under optimized conditions. The LCMO nanoparticles exhibited noteworthy photocatalytic activity, as evidenced by a degradation efficiency of 77 % within a 30 min timeframe. Our findings indicate that LCMO nanoparticles possess significant potential for environmental clean-up.

Funder

National Research Foundation of Korea (NRF) & Researchers Supporting Project, Saudi Arabia

Publisher

Walter de Gruyter GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3