Green synthesis of AgNPs from leaves extract of Saliva Sclarea, their characterization, antibacterial activity, and catalytic reduction ability

Author:

Khan Shahab12ORCID,Ullah Ihsan2,Khan Hamayun3,Rahman Faizan Ur2,Rahman Mudassir Ur2,Saleem Muhammad Asim1,Nazir Shoaib1,Ali Arshad4,Ullah Arif1

Affiliation:

1. School of Chemistry and Chemical Engineering, Shaanxi Normal University , 710119, Xi’An , Shannxi , P.R. China

2. Department of Chemistry, GDC Gulabad, University of Malakand, Dir Lower Malakand , 18800, Chakdara , Pakistan

3. Department of Computer Science Faculty of Computer Science and IT , Superior University , Lahore , 54000 , Pakistan

4. Faculty of Computer Science and Information Systems , Islamic University of Madinah , Al Madinah Al Munawarah, 42351 , Medina , Saudi Arabia

Abstract

Abstract Several technologies are employed for the synthesis of silver nanoparticles, each synthesis technique has advantages and disadvantages, and the best technique relies on the application at hand, the required qualities of the nanoparticles, and the size of the product. But in this article green synthesis were followed. In this research, AgNPs were synthesized using Salvia Sclarea leaf extract in green synthetic routes. The synthesized nanoparticles were examined using UV–vis spectroscopy, powder XRD, SEM, and FT-IR. Here three different type of silver nanoparticles were biosynthesized, AgNPs-1, AgNPs-2, and AgNPs-3 (where composition of AgNO3 and extract were 6:1, 10:1 and 14:1 respectively). The catalytic ability of AgNPs 1–3 was determine in the reduction of nitro-compounds into corresponding amines, where AgNPs-2 was found efficient reductive catalyst. Moreover, antibacterial activities were checked against both gram-positive (Bacillus Suntilis) and gram-negative bacteria (Klebsiella pneumoniae). Upon increasing Ag contents antibacterial activities were found in increasing mode. Which open new era of knowledge for further consideration.

Publisher

Walter de Gruyter GmbH

Subject

Physical and Theoretical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3