Synthesis, characterization and efficient photo-catalytic performance of methylene blue by Zn doped SnO2 nanoparticles

Author:

Kaleeswaran B.1,Vinodhkumar G.1,Shanmugavadivu Ra.1

Affiliation:

1. PG and Research Department of Physics , Raja Doraisingam Government Arts College , Sivagangai 630561 , Affiliated to Alagappa University , Karaikudi , Tamil Nadu , India

Abstract

Abstract In this manuscript, we present a facile and friendly sol-gel method to prepare bare and Zn-doped SnO2 nanoparticles and measured the photocatalytic performance of the materials by measuring the degradation of MB dye under UV light irradiation. A variety of analytical techniques were employed to characterize the materials, including X-ray diffraction, UV–Vis spectroscopy, Photoluminescence (PL), Fourier Transform Infrared Spectroscopy (FT-IR) and Scanning Electron Microscopy (SEM). The X-ray diffraction (XRD) analysis reveals the presence of tetragonal SnO2 nanostructures. The average crystallite size of the bare SnO2 nanostructures was found to be 7.4 nm, but the addition of Zn dopant caused the size to increase to 10.5 nm. PL studies shows that the majority of emission energies fell within the SnO2 NPs’ band gap, indicating defects related to oxygen vacancies or Sn interstitials. The morphological analysis of SEM exhibits the various forms of SnO2 nanostructures which are densely agglomerate. The photocatalytic activity of the SZ10 NPs was found to be MB (88 %). The results showed that the Zn doped SnO2 exhibited good photocatalytic activity.

Publisher

Walter de Gruyter GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3