Synthesis, characterization and electrochemistry of triethyl ammonium sulphate ionic liquid

Author:

Khan Jalal1,Muhammad Sayyar1ORCID,Shah Luqman Ali2,Ali Javed3,Ibrar Muhammad4,Rehman Khushnood Ur5

Affiliation:

1. Department of Chemistry, Islamia College Peshawar , 25120 , Peshawar , Khyber-Pakhtunkhwa , Pakistan

2. National Centre of Excellence in Physical Chemistry, University of Peshawar , Peshawar , 25120 , Khyber-Pakhtunkhwa , Pakistan

3. Department of Chemistry , Kohat University of Science & Technology , Kohat , 26000 , Khyber-Pakhtunkhwa , Pakistan

4. Department of Physics , Islamia College Peshawar , 25120 , Peshawar , Khyber-Pakhtunkhwa , Pakistan

5. Department of Botany , Islamia College Peshawar , 25120 , Peshawar , Khyber-Pakhtunkhwa , Pakistan

Abstract

Abstract Protic ionic liquids (PILs) being intrinsic proton conducting ionic species are considered as potential green electrolytes for study of electrocatalytic reactions and for fabrication of IL-based fuel cells (FCs) and batteries. We have prepared a sulfate anion based protic ionic liquid (PIL), triethylammonium sulfate (TEAS) through a reaction involving transfer of proton from H2SO4 to triethylamine (TEA). 1H NMR and FT-IR spectroscopic techniques were employed for confirmation of the synthesis of TEAS and water content of the PIL was quantified using coulometric Karl–Fischer (KF) titration. 1H NMR and FT-IR analysis confirm the synthesis of the PILs and KF-titration analysis shows that TEAS contains 1.43 w/w % water. Electrical conductivity of TEAS was determined at different temperatures showing that the PIL has excellent ionic conductivity that enhances with rise in temperature of the medium. The temperature dependence of the conductivity of the PIL follows the Arrhenius equation as the logσ versus 1/T plot is linear. The electrochemical windows (EWs) of the electrolyte were found using cyclic voltammetry at Pt and Au working electrodes and found to decrease with increase in temperature of the medium. The data revealed that the surfaces of the electrodes are covered with oxide layers due to oxidation of trace water (1.43 w/w %) present in the PIL. The oxide layers growth increase and their onset potential moves to less positive values as the temperature of the PILs is increased. The data was compared with the literature and would be helpful in understanding of the surface electrochemistry in this neoteric medium for being used as potential electrolyte in industry for various electrochemical applications.

Publisher

Walter de Gruyter GmbH

Subject

Physical and Theoretical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3