Cd/SBA-15 heterogeneous catalyst used for acetic acid conversion: pseudo-homogeneous kinetic model, response surface methodology, and historical data design

Author:

Şimşek Veli1

Affiliation:

1. Chemical Engineering Department , Bilecik Seyh Edebali University , 11210 , Gulumbe Campus , Bilecik , Türkiye

Abstract

Abstract Mesoporous materials (MMs) in the Santa Barbara Amorphous (SBA) family can be used as catalysts or support materials (SMs) for catalysts because they have controllable pore structure, thermal and chemical stability, and their surface properties can be modified easily depending on the desired reaction type. Surfactant (Pluronic p123; it is a symmetric triblock copolymer comprising poly and its chemical formula; HO(CH2CH2O)20(CH2CH(CH3)O)70(CH2CH2O)20H), a silica source (such as Tetraethyl orthosilicate: TEOS; SiC8H20O4), and a solvent are used in the synthesis of the SBA family (SBA-15). The SBA-15 was given with the hydrothermal method (HM) a catalyst feature by loading the active substance at a rate of 10, 25 % (cadmium/silica) by mass. Esterification reactions (ERs) were carried out with Cd-SBA-15 (Cd/Si: 10–25 %) catalyst at a feed rate of 1/2 (methanol/acetic acid), in the presence of 0.4 g catalyst, at a reaction temperature of 373 K and for 6–48 h. After 48 h, the catalytic activity (CA) values were obtained as 65 and 68 %, respectively. The re-usability of the catalysts was repeated two times under the same experimental conditions. It was observed that the catalysts maintained their catalytic activity of 73.35 and 68.72 % (3 × 48 h). In addition, the limited effect of catalyst amount on acetic acid conversion was investigated by Response Surface Methodology, and Historical Data Design. Moreover, k 1, k2, equilibrium constant and activation energy values were calculated using the pseudo-homogeneous kinetic model. The physical features of the catalysts were investigated by BET, XRD, FTIR, DRIFT, SEM/EDX, and MAPPING analysis methods.

Publisher

Walter de Gruyter GmbH

Subject

Physical and Theoretical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3