Ab initio study of surfaces of lead and tin based metal halide perovskite structures
Author:
Kuper Henning1ORCID, Jörg August Becker1ORCID
Affiliation:
1. Institute for Physical Chemistry and Electrochemistry, Leibniz University Hanover , Callinstraße 3A, 30163 Hanover , Lower Saxony , Germany
Abstract
Abstract
Hybrid perovskite materials, known for their potential in cost-effective optoelectronic applications, face a knowledge gap in crucial areas, particularly the atomic-level properties of the surface. This study addresses this challenge by refining ab initio methods for characterizing surface structures of cubic methylammonium lead bromide and methylammonium tin bromide (MAMeBr3 with Me = Sn, Pb), avoiding superficial restrictions in atomic movement during geometry optimization. The resulting structures confirmed nearly random MA+ molecule alignment, comparable to real-world experimental conditions. Calculating surface energies for these structures with crystal orientations {100} and {110}, each with different terminations, provides valuable insights into structural properties. Using a carefully chosen thermodynamic reference state, mimicking experimental conditions enables a thermodynamic discussion and facilitates the modulation of the MeBr2 component’s chemical potential. This modulation, in turn, allows for the prediction of crystal morphologies, as illustrated by Wulff’s construction. This approach establishes a crucial link between theoretical predictions and experimental conditions, shedding light on the complexities of hybrid perovskite materials.
Publisher
Walter de Gruyter GmbH
Reference43 articles.
1. Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. J. Am. Chem. Soc. 2009, 131, 6050–6051; https://doi.org/10.1021/ja809598r. 2. Green, M. A.; Dunlop, E. D.; Hohl-Ebinger, J.; Yoshita, M.; Kopidakis, N.; Ho-Baillie, A. W. Prog. Photovolt.: Res. Appl. 2020, 28, 3–15; https://doi.org/10.1002/pip.3228. 3. Kim, J. Y.; Lee, J. W.; Jung, H. S.; Shin, H.; Park, N. G. Chem. Rev. 2020, 120, 7867–7918; https://doi.org/10.1021/acs.chemrev.0c00107. 4. Shrestha, S.; Fischer, R.; Matt, G. J.; Feldner, P.; Michel, T.; Osvet, A.; Levchuk, I.; Merle, B.; Golkar, S.; Chen, H.; Tedde, S. F.; Schmidt, O.; Hock, R.; Rührig, M.; Göken, M.; Heiss, W.; Anton, G.; Brabec, C. J. Nat. Photonics 2017, 11, 436–440; https://doi.org/10.1038/nphoton.2017.94. 5. Wang, Q.; Chen, B.; Liu, Y.; Deng, Y.; Bai, Y.; Dong, Q.; Huang, J. Energy Environ. Sci. 2017, 10, 516–522; https://doi.org/10.1039/c6ee02941h.
|
|