Affiliation:
1. Institut für Physikalische Chemie, Karlsruher Institut für Technologie (KIT) , Kaiserstr. 12 , 76131 Karlsruhe , Germany
Abstract
Abstract
The influence of water molecules on the kinetics of urea condensation reactions was studied with high-level quantum chemical methods and statistical rate theory. The study focuses on the production of biuret, triuret, and cyanuric acid from urea because of their relevance as unwanted byproducts in the urea-based selective catalytic reduction (urea-SCR) exhaust after treatment of Diesel engines. In order to characterize the potential energy surfaces and molecular reaction pathways, calculations with explicitly-correlated coupled-cluster methods were performed. It turned out that the reactions proceed via pre-reactive complexes and the inclusion of one or two water molecules into the condensation mechanisms leads to a decrease of the energy barriers. This effect is particularly pronounced in the production of biuret. Due to the pre-reactive equilibria, the rates of the overall reactions can increase or decrease by incorporating water into the mechanism, depending on the temperature and water concentration. Under the conditions of urea-SCR, the studied reactions are too slow to contribute to the observed byproduct formation.
Funder
Deutsche Forschungsgemeinschaft
Subject
Physical and Theoretical Chemistry
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献