Modulation of optical and structural properties of CoFe2O4/ZnO@CNTs for photocatalytic removal of crystal violet and phenol

Author:

Parveen Sajida1,Alzahrani Fatimah Mohammed A.2,Al Huwayz Maryam3,Adan Wania1,Alrowaili Ziyad Awadh4,Noor-ul-Ain 5,Chaudhary Khadija1,Al-Buriahi Mohammed Sultan6

Affiliation:

1. Institute of Chemistry, Baghdad-ul-Jadeed Campus, The Islamia University of Bahawalpur , Bahawalpur 63100 , Pakistan

2. Department of Chemistry , College of Science, Princess Nourah bint Abdulrahman University , P.O. Box 84428 , Riyadh 11671 , Saudi Arabia

3. Department of Physics , College of Science, Princess Nourah bint Abdulrahman University , P.O. Box 84428 , Riyadh 11671 , Saudi Arabia

4. Department of Physics , College of Science, Jouf University , P.O. Box 2014 , Sakaka , Saudia Arabia

5. Institute of Physics, Baghdad-ul-Jadeed Campus, The Islamia University of Bahawalpur , Bahawalpur 63100 , Pakistan

6. Department of Physics , Sakarya University , Sakarya , Türkiye

Abstract

Abstract Photo-catalysis is a versatile method that is used to remediate water pollution and other issues related to the environment. Metal ferrite with a spinel structure, which is frequently used as a photocatalyst, is another solution for the remediation of environmental pollution. In this work, nanoparticles of cobalt ferrite (CoFe2O4) and zinc oxide (ZnO) were prepared by sol-gel and co-precipitation methods, respectively. CoFe2O4/ZnO (CF/ZnO) and its ternary nanocomposite with CNTs (CF/ZnO@CNTs) were fabricated by a wet-chemical approach. The prepared materials were characterized by different characterization techniques, including X-ray diffraction (XRD), Fourier Transform Infrared spectroscopy (FTIR), and UV–visible spectroscopy for the structural, functional group, and optical study respectively. Band gap values calculated for the prepared materials (CF, CF/ZnO, and CF/ZnO) were 2.45 eV, 3.37 eV, and 2.18 eV, respectively. Crystal violet and phenol were used for the evaluation of the photocatalytic efficiency of the prepared samples. In case of crystal violet photocatalytic degradation of the CF, ZnO and CF/ZnO was 21.43 %, 46.43 %, and 66.62 %, respectively. Whereas, CF/ZnO@CNTs outperformed all catalysts with 97.61 % degradation of crystal violet dye. The degradation of phenol by CF/ZnO and CF/ZnO@CNTs was 53.70 % and 83.33 %, respectively. The CF/ZnO@CNTs exhibit excellent photodegradation activity than other photocatalysts used. It is because of heterojunction fabrication and the presence of CNTs as they increase the life span of photo-generated species and enhance the surface area of the catalyst.

Publisher

Walter de Gruyter GmbH

Subject

Physical and Theoretical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3