Kinetic and thermodynamic studies for evaluation of adsorption capacity of fungal dead biomass for direct dye

Author:

Hassan Asma1,Bhatti Haq Nawaz1,Iqbal Munawar2,Nazir Arif2

Affiliation:

1. Department of Chemistry , University of Agriculture , Faisalabad , Pakistan

2. Department of Chemistry , The University of Lahore , Lahore , Pakistan

Abstract

Abstract This study focuses on evaluation of degradation aptitude of white rot fungus (Coriolus versicolor) against Indosol Turquoise FBL dye. The outcome of numerous parameters including pH, temperature, carbon sources, nitrogen sources, C/N ratio and effect of dye concentration were studied. Maximum decolorization (99.896%) of Indosol Turquoise FBL was obtained by C. versicolor under optimized conditions. After three days, the maximum dye degradation (98%) was observed at pH 4 and 30 °C. Six carbon sources fructose, glucose, maltose, sucrose, rice bran and wheat bran were used and 96.66% degradation was observed by maltose at its optimum growth concentration (0.1 g/100 mL). Various nitrogen sources were employed for decolorization but ammonium nitrate decolorized dye up to 98.05%. The activity of three different enzymes laccase, Lignin peroxidase (LiP) and Manganese peroxidase (MnP) were calculated. The dead biomass of White rot fungus (WRF) was used for biosorption experiments. Maximum q (36 mg/g) was obtained at pH 2, at 30 °C using 0.05 g biosorbent. An increase in the q value was observed with increase in dye concentration. Freundlich adsorption isotherm and pseudo second order kinetics were followed by the data. It can be concluded that C. versicolor could be an efficient source for degradation of dyes from industrial effluents.

Publisher

Walter de Gruyter GmbH

Subject

Physical and Theoretical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3