Insights into the corrosion resistance of a novel quinoline derivative on Q235 steel in acidizing medium under hydrodynamic condition: experimental and surface study

Author:

Singh Ambrish1,Ansari Kashif R.23,Ali Ismat H.4,Younas Muhammad5,Alanazi Abdullah K.6,Lin Yuanhua23

Affiliation:

1. Department of Chemistry , Nagaland University , Lumami, Zunheboto , 798627 , Nagaland , India

2. School of New Energy and Materials, Southwest Petroleum University , Chengdu , 610500 , Sichuan , China

3. State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University , Chengdu , 610500 , Sichuan , China

4. Department of Chemistry , College of Science, King Khalid University , Abha , P.O. Box 9004 , Saudi Arabia

5. Core Research Facilities, King Fahd University of Petroleum & Minerals , Dhahran 31261 , Saudi Arabia

6. Department of Chemistry , College of Science, Taif University , P.O. Box 11099, 21944 , Taif , Saudi Arabia

Abstract

Abstract The study concentrated on the fabrication of an environmentally friendly inhibitor, namely ethyl 4-(4-methoxyphenyl)-2,7,7-trimethyl-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3-carboxylate derivative of quinoline (MQC), in a single step, and assessed its inhibiting property in highly acidic fluid (15 % HCl) for protecting Q235 steel at 1500 rpm rotation speed. Weight reduction, Potentiodynamic polarization, and electrochemical impedance spectroscopy were utilized in the study to investigate the inhibiting impact of MQC. The estimated findings corroborated the inhibiting data of 93.54 and 98.38 % at 308 K with 100 mg/L/only MQC and MQC + KI/75 mg/L + 0.5 mM, respectively, and the impact of temperature upon the inhibitory capability possessed little impact at larger dose quantities. According to the electrochemical outcomes, the MQC is a mixed-type corrosion inhibitor. The findings of the SEM, EDX, and AFM examinations demonstrated that the MQC established a barrier over the surface of Q235 steel by adsorption, changing the hydrophilic and hydrophobic attributes of the Q235 steel surface. An additional XPS assessment demonstrated MQC molecule adsorption on the Q235 steel surface. Density functional theory (DFT) and molecular dynamic simulations (MD) calculations were further performed to justify the experimental results.

Publisher

Walter de Gruyter GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3