Time-Resolved Measurements and Master Equation Modelling of the Unimolecular Decomposition of CH3OCH2

Author:

Eskola Arrke J.12,Blitz Mark A.13,Pilling Michael J.1,Seakins Paul W.1,Shannon Robin J.1

Affiliation:

1. School of Chemistry , University of Leeds , Leeds LS2 9JT , UK

2. Department of Chemistry , University of Helsinki , P.O. Box 55 (A.I. Virtasen aukio 1), FI-00014 Helsinki , Finland

3. National Centre for Atmospheric Science , University of Leeds , Leeds LS2 9JT, UK

Abstract

Abstract The rate coefficient for the unimolecular decomposition of CH3OCH2, k 1, has been measured in time-resolved experiments by monitoring the HCHO product. CH3OCH2 was rapidly and cleanly generated by 248 nm excimer photolysis of oxalyl chloride, (ClCO)2, in an excess of CH3OCH3, and an excimer pumped dye laser tuned to 353.16 nm was used to probe HCHO via laser induced fluorescence. k 1(T,p) was measured over the ranges: 573–673 K and 0.1–4.3 × 1018 molecule cm−3 with a helium bath gas. In addition, some experiments were carried out with nitrogen as the bath gas. Ab initio calculations on CH3OCH2 decomposition were carried out and a transition-state for decomposition to CH3 and H2CO was identified. This information was used in a master equation rate calculation, using the MESMER code, where the zero-point-energy corrected barrier to reaction, ΔE 0,1, and the energy transfer parameters, ⟨ΔEdown × T n, were the adjusted parameters to best fit the experimental data, with helium as the buffer gas. The data were combined with earlier measurements by Loucks and Laidler (Can J. Chem. 1967, 45, 2767), with dimethyl ether as the third body, reinterpreted using current literature for the rate coefficient for recombination of CH3OCH2. This analysis returned ΔE 0,1 = (112.3 ± 0.6) kJ mol−1, and leads to k 1 ( T ) = 2.9 × 10 12 $k_{1}^{\infty}(T)=2.9\times{10^{12}}$ (T/300)2.5 exp(−106.8 kJ mol−1/RT). Using this model, limited experiments with nitrogen as the bath gas allowed N2 energy transfer parameters to be identified and then further MESMER simulations were carried out, where N2 was the buffer gas, to generate k 1(T,p) over a wide range of conditions: 300–1000 K and N2 = 1012–1025 molecule cm−3. The resulting k 1(T,p) has been parameterized using a Troe-expression, so that they can be readily be incorporated into combustion models. In addition, k 1(T,p) has been parametrized using PLOG for the buffer gases, He, CH3OCH3 and N2.

Publisher

Walter de Gruyter GmbH

Subject

Physical and Theoretical Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3