Recyclable polymer microgel stabilized rhodium nanoparticles for reductive degradation of para-nitrophenol

Author:

Iqbal Sadia1,Musaddiq Sara1,Begum Robina2ORCID,Irfan Ahmad34ORCID,Ahmad Zahoor5,Azam Muhammad2,Nisar Jan6ORCID,Farooqi Zahoor H.2ORCID

Affiliation:

1. Department of Chemistry , The Women University Multan , Kutchery Campus , Multan 66000 , Pakistan

2. School of Chemistry, University of the Punjab, New Campus , Lahore 54590 , Pakistan

3. Research Center for Advanced Materials Science, Faculty of Science , King Khalid University , Abha 61413 , Saudi Arabia

4. Department of Chemistry, Faculty of Science , King Khalid University , Abha 61413 , Saudi Arabia

5. Department of Chemistry, University of Engineering and Technology, GT Road , Lahore 54890 , Pakistan

6. National Center of Excellence in Physical Chemistry , University of Peshawar , Peshawar , Pakistan

Abstract

Abstract The purpose of present work is to fabricate rhodium nanoparticles in Poly(N-isopropylmethacrylamide-acrylic acid) [p(NMAA)] microgel system. Synthesized polymer [p(NMAA)] microgels and rhodium nanoparticles loaded [Rh-p(NMAA)] microgels were analyzed by FTIR (Fourier Transform Infra-red) spectroscopy, XRD (X-ray Diffraction) analysis and UV/Vis (Ultraviolet–Visible) spectroscopy. Catalytic reductive conversion of P-nitrophenol (P-Nph) into P-aminophenol (P-Aph) via Rh-p(NMAA) was used to evaluate the catalytic activity of the hybrid microgel [Rh-p(NMAA)]. Kinetic study of catalytic reductive conversion of P-Nph was explored by considering various reaction parameters. It was found that the value of first order observed rate constant (k obs) was varied from 0.019 to 0.206 min−1 with change in concentration of sodium borohydride (SBH) from 3 to 14 mM at given temperature. However, further increment in concentration of SBH from 14 to 17 mM, reduced the value of k obs from 0.206 to 0.156 min−1. The similar dependence of k obs on concentration of P-Nph was observed at specific concentration of SBH and Rh-p(NMAA) at constant temperature. Kinetic study reveals that conversion of P-Nph to P-Aph takes place on the surface of rhodium nanoparticles (RhNPs) by adopting different reactions intermediates and obeys the Langmuir-Hinshelwood mechanism. Reduction efficiency of recycled Rh-p(NMAA) catalytic system was also measured and no significant reduction in the percentage catalytic activity was obtained up to four cycles for P-Nph conversion into P-Aph.

Publisher

Walter de Gruyter GmbH

Subject

Physical and Theoretical Chemistry

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3