Insight role of TiO2 to improve the photocatalytic performance of WO3 nanostructures for the efficient degradation of ciprofloxacin

Author:

Tahir Muhammad Bilal1,Farman Sohail2,Rasheed Adil3,Alrobei Hussein4,Shahzad Khurram5,Ali Arshid Mahmood6,Muhammad Shabbir7

Affiliation:

1. Department of Physics , Khawaja Fareed University of Engineering and Information Technology , Rahim Yar Khan , Pakistan

2. Department of Physics , University of Gujrat , Gujrat , Pakistan

3. Department of Botany , University of Gujrat , Gujrat , Pakistan

4. Department of Mechanical Engineering , College of Engineering, Prince Sattam Bin Abdulaziz University , Al Kharj , Kingdom of Saudi Arabia

5. Center of Excellence in Environmental Studies , King Abdulaziz University , Jeddah , 21589 , Kingdom of Saudi Arabia

6. Department of Chemical and Materials Engineering , King Abdulaziz University , Jeddah , 21589 , Kingdom of Saudi Arabia

7. Department of Physics , College of Science, King Khalid University , P.O. Box 9004 , Abha , 61413 , Kingdom of Saudi Arabia

Abstract

Abstract The current research work is to investigate the photocatalytic efficiency and degradation of ciprofloxacin using WO3/TiO2 nanoparticles under visible light irradiation. The nanoparticles of tungsten trioxide (WO3) and its composite with titanium dioxide (TiO2) i.e. WO3/TiO2 was prepared by hydrothermal method. Four basic characterizations were performed to study the prepared sample materials. To study the morphology of the prepared samples, scanning electron microscopy (SEM) was used. The results of SEM clearly showed that tungsten trioxide (WO3) has Rectangular shaped structure. The average size of the pure Tungsten trioxide nanoparticles was about 40–540 nm. The composite of WO3/TiO2 has spherical structure. The reason behind that was the addition of TiO2 in WO3 changes the morphology of pure WO3, and transformed the rectangular structure to a spherical structure. The presence of TiO2 changes the position and orientation of the nanorods in all possible directions. For the detailed analysis of the functional groups present in these samples, band gap, and optical properties of these samples, Fourier transform infrared spectroscopy (FTIR), ultraviolet visible (UV–VIS) spectroscopy and Photoluminescence (PL) emission spectroscopy was used. UV–Vis spectroscopy results showed that the bandgaps of prepared catalysts vary within the range of 2.76 – 2.5 eV. This decrease in bandgap is directly related with the concentration ratio of TiO2 in WO3. The maximum excitation wavelength observed at 440 nm. The maximum degradation efficiency was at 2% of WO3/TiO2 composite catalyst due to unique morphological structure and increase rate of photo absorption.

Publisher

Walter de Gruyter GmbH

Subject

Physical and Theoretical Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3