Bioactivity of a sol–gel-derived hydroxyapatite coating on titanium implants in vitro and in vivo

Author:

Suwanprateeb Jintamai1,Suvannapruk Waraporn1,Chokevivat Watchara1,Kiertkrittikhoon Siripong2,Jaruwangsanti Nara3,Tienboon Prakit3

Affiliation:

1. National Metal and Materials Technology Center , National Science and Technology Development Agency, Ministry of Science and Technology , Pathumthani 12120 Pathumthani , Thailand

2. Faculty of Veterinary Science, Chulalongkorn University , Bangkok 10330 Bangkok , Thailand

3. Department of Orthopaedics, Faculty of Medicine , Chulalongkorn University , Bangkok 10330 Bangkok , Thailand

Abstract

Abstract Background Hydroxyapatite is widely used as a coating on metallic implants to promote bioactivity. The coating is typically produced using a high temperature, resulting in phase heterogeneity and coating delamination, which may lead to failure of the coating clinically. Development of a simple and low-temperature hydroxyapatite coating technique may improve the bone bonding ability of implants. Objectives To investigate responses to hydroxyapatite-coated titanium produced by a newly developed sol–gel by osteoblasts in vitro and bone in vivo. Methods Osteoblast proliferation was characterized using a methyl thiazolyl tetrazolium assay and cell calcification with an Alizarin red S assay, and the results were compared with those of uncoated titanium. Uncoated and coated screws were inserted into the trabecular bone of New Zealand white rabbit legs. These implants were evaluated mechanically and histologically after 7, 12, and 24 weeks. Results Hydroxyapatite-coated titanium showed a significantly greater cell proliferation and mineralization than uncoated titanium. Extraction torques for the coated screws increased with time of implantation and were significantly greater than those of uncoated screws. We observed bone fragments attached to the surface of all coated screws after removal, but none on uncoated screws. Hematoxylin and eosin-stained bone showed no active inflammatory responses to implantation at any time examined. Bone surrounding either uncoated or coated screws followed typical remodeling stages, but maturation of bone healing was faster with coated screws. Conclusions The sol–gel-derived hydroxyapatite coating showed bioactivity, indicating its potential application as an alternative coating technique to improve the bone bonding ability of implants.

Publisher

Walter de Gruyter GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3