Affiliation:
1. Department of Medical Biology, Medical Faculty , Eskişehir Osmangazi University , Eskişehir , 26480 , Turkey
2. Department of Biostatics and Bioinformatics, Medical Faculty , Eskişehir Osmangazi University , Eskişehir 26480 , Turkey
Abstract
Abstract
Background
Antioxidant levels increase to protect cell homeostasis when oxidant generation is increased by drug or inhibitor treatment. If the oxidant–antioxidant equilibrium is disrupted, oxidative stress will occur.
Objectives
To determine the effects of various potassium channel inhibitors in the disruption of oxidant–antioxidant equilibrium in breast cancer cell lines with various phenotypes.
Methods
MCF-7 or MDA-MB-231 breast cancer cells were treated with tetraethylammonium chloride (5 mM; TEA), 4-aminopyridine (5 mM; 4-AP), margatoxin (25 nM; MgTX), or astemizole (200 nM; AST). After treatment, total antioxidant, oxidant, and oxidative stress levels were determined.
Results
Incubation with TEA, 4-AP, MgTX, and AST increased oxidative stress in both MCF-7 and MDA-MB-231 cells (P < 0.001). Specific inhibitors of calcium-activated potassium channels and ether á go-go 1-related potassium channels produce greater oxidative stress than other inhibitors in MCF-7 breast cancer cells, whereas in MDA-MB-231 cells, the nonselective channel inhibitor 4-AP produces the greatest oxidative stress.
Conclusions
Potassium channel inhibitors used in our study disrupted the antioxidant–oxidant equilibrium and increased oxidative stress in the cancer cell lines. Although all of the channel inhibitors increased oxidative stress in cells, TEA and AST were the most effective inhibitors in MCF-7 cells. 4-AP was the most effective inhibitor in MDA-MB-231 cells. Voltage-gated potassium channels are attractive targets for anticancer therapy, and their inhibitors may enhance the effects of anticancer drugs.
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献