On Multiset Ordering

Author:

Bancerek Grzegorz1

Affiliation:

1. Association of Mizar Users, Białystok, Poland

Abstract

Summary Formalization of a part of [11]. Unfortunately, not all is possible to be formalized. Namely, in the paper there is a mistake in the proof of Lemma 3. It states that there exists xM 1 such that M 1(x) > N 1(x) and (∀yN 1)xy. It should be M 1(x) ⩾ N 1(x). Nevertheless we do not know whether xN 1 or not and cannot prove the contradiction. In the article we referred to [8], [9] and [10].

Publisher

Walter de Gruyter GmbH

Subject

Applied Mathematics,Computational Mathematics

Reference16 articles.

1. [1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41–46, 1990.

2. [2] Grzegorz Bancerek. Reduction relations. Formalized Mathematics, 5(4):469–478, 1996.

3. [3] Grzegorz Bancerek. König’s lemma. Formalized Mathematics, 2(3):397–402, 1991.

4. [4] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107–114, 1990.

5. [5] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529–536, 1990.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3