Affiliation:
1. Rue de la Brasserie 5 7100 La Louvière, Belgium
Abstract
Abstract
In this article, using mostly Pervin [9], Kunzi [6], [8], [7], Williams [11] and Bourbaki [3] works, we formalize in Mizar [2] the notions of quasiuniform space, semi-uniform space and locally uniform space.
We define the topology induced by a quasi-uniform space. Finally we formalize from the sets of the form ((X \ Ω) × X) ∪ (X × Ω), the Csaszar-Pervin quasi-uniform space induced by a topological space.
Subject
Applied Mathematics,Computational Mathematics
Reference12 articles.
1. [1] William W. Armstrong, Yatsuka Nakamura, and Piotr Rudnicki. Armstrong’s axioms. Formalized Mathematics, 11(1):39-51, 2003.
2. [2] Grzegorz Bancerek, Czesław Bylinski, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, Karol Pak, and Josef Urban. Mizar: State-of-the-art and beyond. In Manfred Kerber, Jacques Carette, Cezary Kaliszyk, Florian Rabe, and Volker Sorge, editors, Intelligent Computer Mathematics, volume 9150 of Lecture Notes in Computer Science, pages 261-279. Springer International Publishing, 2015. ISBN 978-3-319-20614-1. doi:10.1007/978-3-319-20615-8_17.
3. [3] Nicolas Bourbaki. General Topology: Chapters 1-4. Springer Science and Business Media, 2013.
4. [4] Czesław Bylinski. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.
5. [5] Roland Coghetto. Convergent filter bases. Formalized Mathematics, 23(3):189-203, 2015. doi:10.1515/forma-2015-0016.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献