Affiliation:
1. Institute of Informatics, University of Białystok , Białystok , Poland
Abstract
Summary
In this Mizar article, we complete the formalization of one of the items from Abad and Abad’s challenge list of “Top 100 Theorems” about Liouville numbers and the existence of transcendental numbers. It is item #18 from the “Formalizing 100 Theorems” list maintained by Freek Wiedijk at http://www.cs.ru.nl/F.Wiedijk/100/. Liouville numbers were introduced by Joseph Liouville in 1844 [15] as an example of an object which can be approximated “quite closely” by a sequence of rational numbers. A real number x is a Liouville number iff for every positive integer n, there exist integers p and q such that q > 1 and
It is easy to show that all Liouville numbers are irrational. The definition and basic notions are contained in [10], [1], and [12]. Liouvile constant, which is defined formally in [12], is the first explicit transcendental (not algebraic) number, another notable examples are e and π [5], [11], and [4]. Algebraic numbers were formalized with the help of the Mizar system [13] very recently, by Yasushige Watase in [23] and now we expand these techniques into the area of not only pure algebraic domains (as fields, rings and formal polynomials), but also for more settheoretic fields. Finally we show that all Liouville numbers are transcendental, based on Liouville’s theorem on Diophantine approximation.
Subject
Applied Mathematics,Computational Mathematics
Reference24 articles.
1. [1] Tom M. Apostol. Modular Functions and Dirichlet Series in Number Theory. Springer- Verlag, 2nd edition, 1997.
2. [2] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
3. [3] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
4. [4] Sophie Bernard, Yves Bertot, Laurence Rideau, and Pierre-Yves Strub. Formal proofs of transcendence for e and _ as an application of multivariate and symmetric polynomials. In Jeremy Avigad and Adam Chlipala, editors, Proceedings of the 5th ACM SIGPLAN Conference on Certified Programs and Proofs, pages 76-87. ACM, 2016. doi: 10.1145/2854065.2854072.
5. [5] Jesse Bingham. Formalizing a proof that e is transcendental. Journal of Formalized Reasoning, 4:71-84, 2011.