The Multiplicity Problem for Periodic Orbits of Magnetic Flows on the 2-Sphere

Author:

Abbondandolo Alberto1,Asselle Luca1,Benedetti Gabriele2,Mazzucchelli Marco3,Taimanov Iskander A.4

Affiliation:

1. Fakultät für Mathematik, Ruhr Universität Bochum, Gebäude NA 4/33, 44801 Bochum, Germany

2. Mathematisches Institut, Universität Leipzig, Augustusplatz 10, 04109 Leipzig, Germany

3. CNRS, École Normale Supérieure de Lyon, UMPA, 46 allée d’Italie, 69364 Lyon Cedex 07, France

4. Sobolev Institute of Mathematics, Avenue Academician Koptyug 4, 630090 Novosibirsk; and Novosibirsk State University, Pirogov Street 2, 630090 Novosibirsk, Russia

Abstract

Abstract We consider magnetic Tonelli Hamiltonian systems on the cotangent bundle of the 2-sphere, where the magnetic form is not necessarily exact. It is known that, on very low and on high energy levels, these systems may have only finitely many periodic orbits. Our main result asserts that almost all energy levels in a precisely characterized intermediate range ( e 0 , e 1 ) ${(e_{0},e_{1})}$ possess infinitely many periodic orbits. Such a range of energies is non-empty, for instance, in the physically relevant case where the Tonelli Lagrangian is a kinetic energy and the magnetic form is oscillating (in which case, e 0 = 0 ${e_{0}=0}$ is the minimal energy of the system).

Funder

Deutsche Forschungsgemeinschaft

Agence Nationale de la Recherche

Publisher

Walter de Gruyter GmbH

Subject

General Mathematics,Statistical and Nonlinear Physics

Reference27 articles.

1. Abbondandolo A., Lectures on the free period Lagrangian action functional, J. Fixed Point Theory Appl. 13 (2013), no. 2, 397–430.

2. Abbondandolo A., Macarini L., Mazzucchelli M. and Paternain G. P., Infinitely many periodic orbits of exact magnetic flows on surfaces for almost every subcritical energy level, preprint 2014, https://arxiv.org/abs/1404.7641; to appear in J. Eur. Math. Soc. (JEMS).

3. Abbondandolo A., Macarini L. and Paternain G. P., On the existence of three closed magnetic geodesics for subcritical energies, Comment. Math. Helv. 90 (2015), no. 1, 155–193.

4. Arnold V. I., Some remarks on flows of line elements and frames, Dokl. Akad. Nauk SSSR 138 (1961), 255–257.

5. Asselle L. and Benedetti G., Infinitely many periodic orbits in non-exact oscillating magnetic fields on surfaces with genus at least two for almost every low energy level, Calc. Var. Partial Differential Equations 54 (2015), no. 2, 1525–1545.

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3