Affiliation:
1. Tianjin Key Lab for Advanced Signal Processing and College of Science , Civil Aviation University of China , Tianjin , 300300 , P. R. China
2. Department of Mathematics , Heilongjiang Institute of Technology , Harbin , 150050 , P. R. China
3. Department of Mathematics , Harbin Institute of Technology , Harbin , 150001 , P. R. China
Abstract
Abstract
This paper concerns itself with the nonexistence and multiplicity of solutions for the following fractional Kirchhoff-type problem involving the critical Sobolev exponent:
[
a
+
b
(
∬
ℝ
2
N
|
u
(
x
)
-
u
(
y
)
|
p
|
x
-
y
|
N
+
p
s
𝑑
x
𝑑
y
)
θ
-
1
]
(
-
Δ
)
p
s
u
=
|
u
|
p
s
*
-
2
u
+
λ
f
(
x
)
in
ℝ
N
,
\Biggl{[}a+b\biggl{(}\iint_{\mathbb{R}^{2N}}\frac{\lvert u(x)-u(y)\rvert^{p}}{%
\lvert x-y\rvert^{N+ps}}\,dx\,dy\biggr{)}^{\theta-1}\Biggr{]}(-\Delta)_{p}^{s}%
u=\lvert u\rvert^{p_{s}^{*}-2}u+\lambda f(x)\quad\text{in }\mathbb{R}^{N},
where
a
≥
0
{a\kern-1.0pt\geq\kern-1.0pt0}
,
b
>
0
,
θ
>
1
{b\kern-1.0pt>\kern-1.0pt0,\theta\kern-1.0pt>\kern-1.0pt1}
,
(
-
Δ
)
p
s
{(-\Delta)_{p}^{s}}
is the fractional p-Laplacian with
0
<
s
<
1
{0\kern-1.0pt<\kern-1.0pts\kern-1.0pt<\kern-1.0pt1}
and
1
<
p
<
N
/
s
{1\kern-1.0pt<\kern-1.0ptp\kern-1.0pt<\kern-1.0ptN/s}
,
p
s
*
=
N
p
/
(
N
-
p
s
)
{p_{s}^{*}\kern-1.0pt=\kern-1.0ptNp/(N-ps)}
is the critical Sobolev exponent,
λ
≥
0
{\lambda\geq 0}
is a parameter,
and
f
∈
L
p
s
*
/
(
p
s
*
-
1
)
(
ℝ
N
)
∖
{
0
}
{f\in L^{p_{s}^{*}/(p_{s}^{*}-1)}(\mathbb{R}^{N})\setminus\{0\}}
is a nonnegative function. When
λ
=
0
{\lambda=0}
, we show that the multiplicity and nonexistence of solutions for the above problem are related with N, θ, s, p, a, and b. When
λ
>
0
{\lambda>0}
, by using Ekeland’s variational principle and the mountain pass theorem, we show that there exists
λ
*
*
>
0
{\lambda^{**}>0}
such that the above problem admits at least two nonnegative solutions for all
λ
∈
(
0
,
λ
*
*
)
{\lambda\in(0,\lambda^{**})}
. In the latter case, in order to overcome the loss of compactness, we derive a fractional version of the principle of concentration compactness in the setting of the fractional p-Laplacian.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Heilongjiang Province
Subject
General Mathematics,Statistical and Nonlinear Physics
Reference42 articles.
1. C. O. Alves,
Multiple positive solutions for semilinear elliptic equations in ℝN{\mathbb{R}^{N}} involving critical exponents,
Electron. J. Differential Equations 13 (1997), 1–10.
2. C. O. Alves, J. V. Goncalves and O. H. Miyagaki,
Multiple positive solutions for semilinear elliptic equations in ℝN{\mathbb{R}^{N}} involving critical exponents,
Nonlinear Anal. 32 (1998), 41–51.
3. A. Ambrosetti and P. Rabinowitz,
Dual variational methods in critical point theory and applications,
J. Funct. Anal. 14 (1973), 349–381.
4. D. Applebaum,
Lévy processes: From probability to finance quantum groups,
Notices Amer. Math. Soc. 51 (2004), 1336–1347.
5. G. Autuori, A. Fiscella and P. Pucci,
Stationary Kirchhoff problems involving a fractional elliptic operator and a critical nonlinearity,
Nonlinear Anal. 125 (2015), 699–714.
Cited by
69 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献