Optimal Functional Inequalities for Fractional Operators on the Sphere and Applications

Author:

Dolbeault Jean1,Zhang An1

Affiliation:

1. Ceremade, UMR CNRS no. 7534, Université Paris-Dauphine, PSL Research University, Place de Lattre de Tassigny, 75775 Paris 16, France

Abstract

Abstract This paper is devoted to the family of optimal functional inequalities on the n-dimensional sphere 𝕊 n ${{\mathbb{S}}^{n}}$ , namely F L q ( 𝕊 n ) 2 - F L 2 ( 𝕊 n ) 2 q - 2 𝖢 q , s 𝕊 n F s F 𝑑 μ for all F H s / 2 ( 𝕊 n ) , $\frac{\lVert F\rVert_{\mathrm{L}^{q}({\mathbb{S}}^{n})}^{2}-\lVert F\rVert_{% \mathrm{L}^{2}({\mathbb{S}}^{n})}^{2}}{q-2}\leq\mathsf{C}_{q,s}\int_{{\mathbb{% S}}^{n}}{F\mathcal{L}_{s}F}\,d\mu\quad\text{for all }F\in\mathrm{H}^{s/2}({% \mathbb{S}}^{n}),$ where s ${\mathcal{L}_{s}}$ denotes a fractional Laplace operator of order s ( 0 , n ) ${s\in(0,n)}$ , q [ 1 , 2 ) ( 2 , q ] ${q\in[1,2)\cup(2,q_{\star}]}$ , q = 2 n n - s ${q_{\star}=\frac{2n}{n-s}}$ is a critical exponent, and d μ ${d\mu}$ is the uniform probability measure on 𝕊 n ${{\mathbb{S}}^{n}}$ . These inequalities are established with optimal constants using spectral properties of fractional operators. Their consequences for fractional heat flows are considered. If q > 2 ${q>2}$ , these inequalities interpolate between fractional Sobolev and subcritical fractional logarithmic Sobolev inequalities, which correspond to the limit case as q 2 ${q\to 2}$ . For q < 2 ${q<2}$ , the inequalities interpolate between fractional logarithmic Sobolev and fractional Poincaré inequalities. In the subcritical range q < q ${q<q_{\star}}$ , the method also provides us with remainder terms which can be considered as an improved version of the optimal inequalities. The case s ( - n , 0 ) ${s\in(-n,0)}$ is also considered. Finally, weighted inequalities involving the fractional Laplacian are obtained in the Euclidean space, by using the stereographic projection.

Funder

Agence Nationale de la Recherche

European Research Council

Publisher

Walter de Gruyter GmbH

Subject

General Mathematics,Statistical and Nonlinear Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3