Electrotransport in the La2NiO4-based solid solutions

Author:

Cherepanov Vladimir A.1,Gilev Artem R.2,Kiselev Evgeny A.2

Affiliation:

1. Department of Physical and Inorganic Chemistry , Institute of Natural Science and Mathematics, Ural Federal University , Lenin av., 51 , Yekaterinburg 620000 , Russia , Tel./Fax: +7(343)2517927

2. Department of Physical and Inorganic Chemistry , Institute of Natural Science and Mathematics, Ural Federal University , Lenin av., 51 , Yekaterinburg 620000 , Russia

Abstract

Abstract This work combines new and earlier obtained results on electron hole and oxygen-ion transport in the La2NiO4-based solid solutions. The effect of lanthanum substitution with Ca/Sr and nickel with Fe, Mn, Co or Cu on transport properties of La2− x A x Ni1− y Me y O4+δ was analyzed and discussed at different substitution levels. Besides the changes in concentration and mobility of electron holes induced by the doping with cations of different nature, the partial transformation of Ni3+ from low-spin to high-spin state was shown to have a profound effect on transport properties of these materials leading to a notable decrease in mobility of electron holes, especially in the strontium-rich oxides. The obtained results suggested that the size factor was the main driving force behind the observed transformation of Ni3+. The oxygen-ion transport in La2− x A x Ni1− y Me y O4+δ was characterized by significant surface exchange limitations, which can be reduced only at relatively high concentrations of strontium and iron, and should be taken into account while evaluating the ionic conductivity by means of oxygen permeation or the modified Hebb-Wagner polarization method.

Publisher

Walter de Gruyter GmbH

Subject

General Chemical Engineering,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3