Magnetic Pt single and double core-shell structures for the catalytic selective hydrogenation of cinnmaladehyde

Author:

Dinamarca Robinson B.1,Espinoza-González Rodrigo2,Campos Cristian H.1,Pecchi Gina13

Affiliation:

1. Departamento de Físico-Química, Facultad de Ciencias Químicas , Universidad de Concepción , Edmundo Larenas 129 , Concepción , Chile

2. Department of Chemical Engineering, Biotechnology and Materials, FCFM , Universidad de Chile , Beauchef 851 , Santiago , Chile

3. Millenium Nuclei on Catalytic Processes towards Sustainable Chemistry (CSC) , Concepción , Chile

Abstract

Abstract This study reports the catalytic preparation, characterization, and evaluation of nanoscale core-shell structures with a γ-Fe2O3 core covered by a SiO2 monoshell or by a SiO2@TiO2 multishell as a support for Pt nanoparticles (NPs) to synthesize active and operationally stable catalysts for selective liquid-phase cinnamaldehyde hydrogenation. The structures were designed with a magnetic core so they could be easily recovered from the catalytic bed by simple magnetization and with a SiO2 monoshell or a SiO2@TiO2 multishell to protect the magnetic core. At the same time, this study details the effect of the shell on the catalytic performance. Moreover, the effect of particle size on the selective production of cinnamyl alcohol was studied by preparing two families of catalysts with metal loadings of 1 wt% and 5 wt% Pt with respect to the core-shell. The particle size effect enabled the Fe2O3@SiO2-5%Pt system, with an average particle size of 5.6 nm, to reach 100 % conversion of cinnamaldehyde at 300 min of reaction, producing cinnamyl alcohol with 90 % selectivity; this result differed greatly from that of the Fe2O3@SiO2-1%Pt (dPt = 3.5 nm) system, which reached a maximum conversion at 600 min with 49 % selectivity for the product of interest. However, the Fe2O3@SiO2@TiO2-x%Pt systems showed lower levels of conversion and selectivity compared to those of the Fe2O3@SiO2-x%Pt catalysts, which is attributed to the fact that average metal particle sizes below 5.0 nm were obtained in both cases. After reduction in H2 at 773 K, the Fe2O3@SiO2@TiO2-1%Pt catalyst showed deactivation, reaching 10 % conversion at 600 min of reaction and 60 % selectivity for the product of interest. However, the reduced Fe2O3@SiO2@TiO2-5%Pt system showed 98 % conversion with 95 % selectivity for cinnamyl alcohol at 24 h of operation; the increase in selectivity is attributed to the combined effects of the increase in average particle size (~7.5 nm) and the presence of strong metal-support interaction – SMSI – effects after reduction. Finally, the most selective systems were tested for operational stability, where the Fe2O3@SiO2@-5%Pt catalyst could be reused in three consecutive operating cycles while maintaining its activity and selectivity for cinnamyl alcohol – unlike the Fe2O3@SiO2@TiO2-5%Pt reduced system, which was deactivated after the third reaction cycle due to active phase leaching.

Funder

CONICYT

Publisher

Walter de Gruyter GmbH

Subject

General Chemical Engineering,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3