Ionic liquid-based nanofluids (ionanofluids) for thermal applications: an experimental thermophysical characterization

Author:

Oster Kamil12,Hardacre Christopher12,Jacquemin Johan23,Ribeiro Ana P. C.4,Elsinawi Abdulaziz5

Affiliation:

1. The University of Manchester, School of Chemical Engineering and Analytical Science , Sackville Street, M13 9PL , Manchester , United Kingdom of Great Britain and Northern Ireland

2. Queen’s University Belfast, School of Chemistry and Chemical Engineering , Stranmillis Road, BT9 5AG , Belfast , United Kingdom of Great Britain and Northern Ireland

3. Université François Rabelais, Laboratoire PCM2E , Parc de Grandmont 37200 , Tours , France

4. Universidade de Lisboa, Centro de Química Estrutural, Instituto Superior Técnico , Av. Rovisco Pais 1 , 1049-001 Lisbon , Portugal

5. King Fasial University , Materials Engineering Department, College of Engineering , Al-Hasa, 31982 , Hofuf , Saudi Arabia

Abstract

Abstract Heat transfer fluids materials are manufactured for the purpose of transfer, distribution and storage of heat. Several of their important properties can be listed (for example flash point, thermal expansivity or technical safety). However, to assess the thermal exchange performance of these fluids, a prior knowledge of their heat capacity, density, viscosity and thermal conductivity is obligatory. The most popular heat transfer fluids are based on organic liquids, such as ethylene glycol. However, new technologies and development require more efficient materials. Ionanofluids, mixtures of ionic liquids and nanoparticles, were proposed as a viable replacement for those commonly used fluids due to the properties of ionic liquids (wide liquid range or low vapour pressure and flammability) combined with enhanced thermophysical properties of nanofluids caused by the dispersion of nanoparticles (mainly thermal conductivity and heat capacity). Very few authors reported the extensive analysis of those systems thermophysical properties and impact on the heat exchange efficiency. Moreover, the availability of published data is very limited. The aim of this work is to investigate ionanofluids based on the trihexyl(tetradecyl)phosphonium cation paired with the acetate, butanoate, hexanoate, octanoate or decanoate anion, mixed with carbon nanotubes, boron nitride, graphite or mesoporous carbon as nanoparticles with concentration up to 3 wt %. The density, heat capacity, thermal stability, thermal conductivity and viscosity of selected ionanofluids were determined experimentally as functions of the temperature (up to 363.15 K) and compared with theoretical tools to evaluate the predictive capability. Based on the experimental results, lubrication, heat storage potential and economic analysis were also discussed and compared to commercial heat transfer fluids.

Publisher

Walter de Gruyter GmbH

Subject

General Chemical Engineering,General Chemistry

Reference98 articles.

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3