TiO2 microrods with stacked 3D nanovoids for photoelectrochemical water splitting

Author:

Mamon Filip1,Fajgar Radek2,Jandova Vera2,Koci Eva1,Jakubec Ivo1,Zhigunov Alexander3,Brovdyova Tatjana4,Bakardjieva Snejana1

Affiliation:

1. Institute of Inorganic Chemistry of the Czech Academy of Sciences , 205 68 Rez , Czech Republic

2. Institute of Chemical Process and Fundamentals of the Czech Academy of Sciences , Rozvojova 2/135 , 165 02 Prague , Czech Republic

3. Institute of Macromolecular Chemistry of the Czech Academy of Sciences , Heyrovskeho nam.1888/2 , 162 00 Prague , Czech Republic

4. Faculty of Mechanical Engineering , Jan Evangelista Purkyne University , Pasteurova 3334/7 , 400 96 Usti nad Labem , Czech Republic

Abstract

Abstract This paper reports an original nonstandard green concept to obtain TiO2 microrods with polyhedral densely stacked 3D nanovoids prepared via the heat treatment of a hydrogen titanate. The intermediate hydrogen titanate was synthesized by a solid-liquid-solid (SLS) route from an ammonia-saturated aqueous solution of TiOSO4 at 0 °C. The effect of the postgrowth thermal annealing procedure to remove ice (water) and the proposed mechanism to explain the underlying transitions from the intermediate precursor to nanostructured TiO2 microrods with stacked 3D nanovoids were investigated. The small-angle X-ray scattering (SAXS) analysis indicates that at temperatures above 500 °C, the release of confined ice (water) takes place, which leads to the creation of self-assembled polyhedral nanovoids open to the surface. Their size ranges from 5 to 78 nm in both length and width, with a depth of ~3.88 nm. The first use of these stacked 1D TiO2 microrods as the working electrode in a photoelectrochemical (PEC) cell for water splitting is demonstrated. The estimated value of ζ-potential depends on both annealing temperature and crystallite size. Anatase sample 1D TiO/800 with ζ-potential (−29.1) mV and average crystallite size ~68 nm was observed to be highly stable in aqueous suspension. The SLS method yields low-cost 1D TiO2 materials possessing high photoreactivity with water. The PEC measurements indicate that three-dimensional hollow structures with a controlled geometry via patterned 1D TiO2 surface are promising materials for hydrogen generation from water splitting.

Publisher

Walter de Gruyter GmbH

Subject

General Chemical Engineering,General Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3