Controlled allylation of polyelectrolytes: a deep insight into chemical aspects and their applicability as building blocks for robust multilayer coatings

Author:

Nguyen Thi-Thanh-Tam1,Belbekhouche Sabrina1,Auvergne Rémi2,Carbonnier Benjamin1,Grande Daniel1

Affiliation:

1. Institut de Chimie et des Matériaux Paris-Est, UMR 7182 CNRS-Université Paris-Est Créteil Val-de-Marne , 2 rue Henri Dunant , 94320 Thiais , France

2. ICGM, UMR 5253 – CNRS, Université de Montpellier, ENSCM , 240 Avenue Emile Jeanbrau , 34296 Montpellier , France

Abstract

Abstract Polyelectrolytes (PEs) bearing easily derivatizable functions for possible post-modification under mild conditions can find a broad range of applications in various fields. The present paper describes the successful controlled side-chain allylation of two types of PEs: polyamine-based polycations, i.e. poly(allylamine hydrochloride) (PAH) and branched polyethyleneimine (PEI), and strong polyanions, i.e. poly(sodium vinyl sulfonate) (PVS) and poly(sodium 4-styrene sulfonate) (PSS). PSS has been largely investigated in the literature, while PVS is much less commonly explored. The allylation of each type presents its own drawback, i.e. heterogeneous reaction in the case of strong polyanions and instability of partially protonated allylated polyamine products. Nevertheless, all encountered difficulties could be solved and thoroughly elucidated by different experimental tests. This partial allyl-functionalization does not affect the electrolytic properties of the newly allylated PEs, as evidenced by the effective construction of two series of polyelectrolyte multilayer (PEM) films, namely PEI-ene (PSS-ene/PAH-ene)4 and PEI-ene (PVS-ene/PAH-ene)4, the latter being one of the rare examples developed in the literature. The presence of allyl groups on the PE side-chains allows for the stabilization of the resulting PEM films via thiol-ene photo-crosslinking in the presence of a water-soluble dithiol crosslinker. In order to fix permanently the resulting crosslinked PEM films on substrates, the covalent crosslinking occurs not only between different C=C bonds on PE layers but also with those present on substrates preliminarily functionalized with allyl groups via sulfur–gold chemistry. The robustness of both resulting crosslinked PEM films under strongly basic solution (pH 14) is validated by Quartz Crystal Microbalance (QCM) measurements. The versatility and effectiveness of the present approach is expected to find potential applications in different scientific and technological fields.

Publisher

Walter de Gruyter GmbH

Subject

General Chemical Engineering,General Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3