Multidisciplinary sensitivity analysis for turbine blade considering thickness uncertainties

Author:

Yang Fan1,Zhang Chunyu1,Gao Wenjing2,Li Lei3

Affiliation:

1. State Key Laboratory of Mechanics and Control of Mechanical Structures, MIIT Key Laboratory of Multifunctional Lightweight Materials and Structures , College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics , Nanjing 210016 , China

2. Beijing Power Machinery Research Institute , Beijing 100074 , China

3. Department of Engineering Mechanics , Northwestern Polytechnincal University , Xi’an 710072 , China

Abstract

Abstract This work presents an approach for sensitivity analysis of turbine cooling blade with surface thickness uncertainties, combining mesh deformation method, neural network model and multidisciplinary analysis. Normally, for even tiny shape changes, conventional geometry-based method failed easily during the auto-processing analysis. Therefore, mesh deformation method was utilized to capture the tiny size changes in the multidisciplinary analysis for both the fluid and the structure meshes. The neural network model is constructed by design of experiments to reduce the computational cost. Sensitivity analysis of the multidisciplinary system of blade is performed by numerical difference algorithm with the neural network model. Results showed that the proposed method was effective and practical in engineering.

Funder

Natural Science Foundation of Jiangsu Province

National Natural Science Foundation of China

Natural Science Foundation of Shanghai

Shaanxi Science Foundation for Distinguished Young Scholars

Publisher

Walter de Gruyter GmbH

Subject

Aerospace Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3