Author:
Wronski M.,Wierzbanowski K.,Wronski S.,Bacroix B.,Lipinski P.
Abstract
AbstractThe goal of this work was theoretical and experimental study of micro- and macroscopic mechanical fields of 6061 aluminum alloy induced by the asymmetric rolling process. Two-scale constitutive law was used by implementing an elasto-plastic self-consistent scheme into the Finite Element code (ABAQUS/Explicit). The model was applied to study the asymmetric rolling. Such a deformation process induces heterogeneous mechanical fields that were reproduced by the model thanks to the crystallographic nature of constitutive law used. The studied material was processed, at room temperature, in one rolling pass to 36% reduction. The resulting material modifications were compared with predictions of the two-scale model. Namely, the calculated textures were compared with experimental ones determined by X-ray diffraction. Especially, detailed quantitative analysis of texture variation across the sample thickness was done. The influence of this texture variation on plastic anisotropy was studied. The advantages of asymmetric rolling process over symmetric one were identified. The main benefits are a nearly homogeneous crystallographic texture, reduced rolling normal forces and homogenization of plastic anisotropy through the sample thickness.
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献