Recycling of Gallium from End-of-Life Light Emitting Diodes

Author:

Nagy S.,Bokányi L.,Gombkötő I.,Magyar T.

Abstract

AbstractNowadays Light Emitting Diodes (LEDs) are widely utilized. They are applied as backlighting in Liquid Crystal Displays (LCD) and TV sets or as lighting equipments in homes, cars, instruments and street-lightning. End of life equipments are containing more and more LEDs. The recovery of valuable materials – such as Ga, Au, Cu etc. – from the LEDs is essential for the creating the circular economy. First task is the development of a proper recycling technology. Most of the researchers propose fully chemical or thermal-chemical pathway for the recycling of LEDs.In the meantime our approach based on the thorough investigation of the structure and composition of LEDs, and shown in this paper, is the combination of mechanical and chemical techniques in order to recover more valuable products, as well as to facilitate the mass transfer. Our laboratory scale experiments are introduced, the final aim of which is Ga recovery in accordance with our above approach. It was experimentally proved that the LED chips contain Ga and can be recovered by mechanical processes along with copper-product. Ga is presented on the surface of the chips in GaN form. Mechano-chemical activation in high energy density stirred medium mill and the following acidic leaching resulted in the enrichment of 99.52% of gallium in the pregnant solution.

Publisher

Walter de Gruyter GmbH

Subject

Metals and Alloys

Reference11 articles.

1. Wet etching of GaN, AlN, and SiC: a review

2. Recycling process for recovery of gallium from GaN an e - waste of LED industry through ball milling annealing and leaching;Swain;Environmental Research,2015

3. Removal of gallium ( III ) ions from acidic aqueous solution by supercritical carbon dioxide extraction in the green separation process;Chou;Hazard Mater,2008

4. Novel recycle technology for recovering rare metals In ) from waste light - emitting diodes of;Zhan;Journal Hazardous Materials,2015

5. Structural formation and leaching behaviour of mechanically activated lignite fly ash based geopolymer of Envir and;Mucsi;Eng Landscape Management,2016

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3