Stochastic electrical energy management of industrial Virtual Power Plant considering time-based and incentive-based Demand Response programs option in contingency condition

Author:

Nosratabadi Seyyed Mostafa1ORCID,Hooshmand Rahmat-Allah2

Affiliation:

1. Department of Electrical Engineering , Sirjan University of Technology , Sirjan , Iran

2. Department of Electrical Engineering , Faculty of Engineering , University of Isfahan , Isfahan , Iran

Abstract

Abstract Nowadays, the sustainable energy management of industrial environments is of great importance because of their heavy loads and behaviors. In this paper, the Virtual Power Plant (VPP) idea is commented as a collected generation to be an appropriate approach for these networks handling. Here, Technical Industrial VPP (TIVPP) is characterized as a dispatching unit contains demands and generations situated in an industrial network. A complete structure is proposed here for possible conditions for different VPPs cooperation in the power market. This structure carries out a day-ahead and intra-day generation planning by choosing the best Demand Response (DR) programs considering wind power and market prices as the uncertain parameters. A risk management study is likewise taken into account in the proposed stages for contingency conditions. So, some component changes, like, regular demand changes and single-line outage are prepared in the framework to authorize the suggested concept in the contingency situation. To determine the adequacy and productivity of the proposed strategy, the IEEE-RTS modified framework is examined to test the technique and to evaluate some reassuring perspectives too. By the proposed methodology, the delectability of DR projects is uncovered in industrial networks and the improvement level of load shedding and the lower cost will be achieved.

Publisher

Walter de Gruyter GmbH

Subject

Energy Engineering and Power Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3