Multi-Objective Optimal Power Flow Using Efficient Evolutionary Algorithm

Author:

Reddy S. Surender,Bijwe P.R

Abstract

Abstract A novel efficient multi-objective optimization (MOO) technique for solving the optimal power flow (OPF) problem has been proposed in this paper. In this efficient approach uses the concept of incremental power flow model based on sensitivities and some heuristics. The proposed approach is designed to overcome the main drawback of conventional MOO approach, i. e., the excess computational time. In the present paper, three objective functions i. e., generation cost, system losses and voltage stability index are considered. In the proposed efficient MOO approach, the first half of the specified number of Pareto optimal solutions are obtained by optimizing the fuel cost objective while considering other objective (i. e., system loss or voltage stability index) as constraint while the second half is obtained in a vice versa manner. After obtaining the total Pareto optimal solutions, they are sorted in the ascending order of fuel cost objective function value obtained for each solution leads to the Pareto optimal front. The proposed efficient approach is implemented using the differential evolution (DE) algorithm. The proposed efficient MOO approach can effectively handle the complex non-linearities, discrete variables, discontinuities and multiple objectives. The effectiveness of the proposed approach is tested on standard IEEE 30 bus test system. The simulation studies show that the Pareto optimal solutions obtained with proposed efficient MOO approach are diverse and well distributed over the entire Pareto optimal front. The simulation results indicate that the execution speed of proposed efficient MOO approach is approximately 10 times faster than the conventional evolutionary based MOO approaches.

Publisher

Walter de Gruyter GmbH

Subject

Energy Engineering and Power Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3