An enhanced implementation of SRF and DDSRF-PLL for three-phase converters in weak grid

Author:

Hussein Arkan A.1ORCID,Ahmed Abdulbasit H.1,Mohammed Natheer M.1

Affiliation:

1. Electrical Engineering Department , Tikrit University , Tikrit , Iraq

Abstract

Abstract Renewable energy generation systems connected to utility grid require perfect synchronization to grid which is one of the most important issues that needs to be taken into consideration. This paper proposed a hardware-accelerated implementation for the decoupled double synchronous reference frame phase-locked loop (DDSFR-PLL) for grid synchronization in grid-connected converters in weak grid that suffers from phase voltage-unbalance, variable phase and frequency conditions. Since the transformations and filtering of this method is computationally intensive and needs to be executed as fast as possible by the microcontroller unit (MCU) and Due to the presence of other current and voltage regulation loops in the same interrupt service routine (ISR) with high frequency rate, a hardware-based acceleration using the STM32G4x4 MCU built-in filter, filter math accelerator (FMAC) and coordinate rotation digital computer (CORDIC) is used to speed the execution time. This study addresses the description, derivation and implementation of the both DQ-PLL and DDSRF-PLL algorithms. The performance of both pure-software and accelerated implementation is demonstrated, compared and run on a three-level active neutral point clamped (ANPC) converter board. In proposed method, CPU load dropped from 80.5% by using the conventional software implementation to 23.6% (70% load reduction).This reduction in CPU load enables the addition of more features and more advanced current and voltage control algorithms.

Publisher

Walter de Gruyter GmbH

Subject

Energy Engineering and Power Technology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3