Optimized neural network and adaptive neuro-fuzzy controlled dynamic voltage restorer for power quality performance

Author:

Kumar Prashant1,Arya Sabha Raj1ORCID,Mistry Khyati D.1

Affiliation:

1. Department of Electrical Engineering , S. V. National Institute of Technology , Surat , 395007 , Gujarat , India

Abstract

Abstract In this article, a hybrid approach is implemented namely, neural network training (NNT) based machine learning (ML) estimator inspired by artificial neural network (ANN) and self-adaptive neuro-fuzzy inference system (ANFIS) to tackle the voltage aggravations in the power distribution network (DN). In this work, potential of swarm intelligence technique namely particle swam optimization (PSO) is analysed to obtain an optimum prediction model with certain modifications in training algorithm parameters. In practice, when the systems are continuously subjected to parametric changes or external disturbances, then ample time is dedicated to tune the system to regain its stable performance. To improve the dynamic performance of the system intelligence-based techniques are proposed to overcome the shortcomings of conventional controllers. So, gain tuning process based on the intelligence system is a desirable choice. The statistical tools are used to proclaim the effectiveness of the controllers. The obtained MSE, RMSE, ME, SD and R were evaluated as 0.0015959, 0.039949, −0.00089838, 0.039941 and 1 in the training phase and 0.0015372, 0.039207, −0.0005657, 0.039203 and 1 in the testing phase, respectively. The results revealed that the ANFIS-PSO network model could accomplish a better DC voltage regulation performance when it is compared to the conventional PI. The proposed intelligence strategies confirm that the predicted DVR model based on NNT-ML and ANFIS has faster convergence speed and reliable prediction rate. Moreover, the simulation results show that the dynamic response is improved with proposed PSO based NNT based ML and ANFIS (Takagi-Sugeno) that significantly compensates the voltage based PQ issues. The proposed DVR is actualized in MATLAB/SIMULINK platform.

Publisher

Walter de Gruyter GmbH

Subject

Energy Engineering and Power Technology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3