Use of waste activated carbon and wood ash mixture as an electrical grounding enhancement material

Author:

Wahba Mahmoud1ORCID,Abdel-Salam Mazen2,Nayel Mohamed2,Ziedan Hamdy A.2

Affiliation:

1. Aqua Paris for Natural Water Company , N ew-Valley , Egypt

2. Electrical Engineering Department, Assiut University , Assiut 71515 , Egypt

Abstract

Abstract The grounding scheme is one of the main elements for protection system to mitigate the effect of unwanted lightning strikes or operational failures due to faults in generation, transmission and distribution systems. Desert sand soil has a very low electric conductivity, causing weakness in grounding system. To mitigate problems, the soil is supported with a high conductivity agent to adjust the soil conductivity to acceptable levels. A high-cost and non-renewable commercial product can be added to soils to increase their conductivity. This study brings innovation to conventional soil-enhancement materials. A newly developed mixture is proposed, which is composed of waste-activated carbon received from water purification industries and wood ash from agricultural wastes. First, mixture samples with different compositions of available waste materials were prepared. Then, experimental tests were performed and optimized with a combined genetic algorithm (GA) and fuzzy ranking method to estimate the optimal percentage volume value of each material involved in the developed mixture. To validate the effectiveness of the developed mixture, the results were compared with a commercial product available in the market. Also, the obtained results using GA are compared with those obtained by particle swarm optimization (PSO) to appreciate the best GA solutions. The effectiveness of using the developed mixture and the commercial product in reducing the resistance-to-ground of a rod driven in high and low resistivity soils is evaluated. Finally, a sample of the developed mixture was checked to be non-corrosive material for copper grounding rods.

Publisher

Walter de Gruyter GmbH

Subject

Energy Engineering and Power Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3