A phasor-distance based faulty phase detection and fault classification technique for parallel transmission lines

Author:

Kothari Nishant1,Bhalja Bhavesh R.2,Pandya Vivek3,Tripathi Pushkar4,Jena Soumitri2

Affiliation:

1. Department of Electrical Engineering, Marwadi University, Rajkot, Gujarat, India

2. Department of Electrical Engineering, Indian Institute of Technology, Roorkee, Uttarakhand, India

3. Department of Electrical Engineering, School of Technology, Pandit Deendayal Petroleum University, Raison, Gandhinagar, India

4. Department of Electrical Engineering, Institute of Engineering and Technology, Lucknow, Uttar Pradesh, India

Abstract

AbstractThis paper presents a phasor-distance based faulty phase detection and fault classification technique for parallel transmission lines. Detection and classification of faulty phase(s) have been carried out by deriving indices from the change in phasor values of current with a distance of one cycle. The derived indices have zero values during normal operating conditions whereas the index corresponding to the faulty phase exceeds the pre-defined threshold in case of occurrence of a fault. A separate ground detection algorithm has been utilized for the identification of involvement of ground in a faulty situation. The performance of the proposed technique has been evaluated for intra-circuit, inter-circuit and simultaneous faults with wide variations in system and fault conditions. The suggested technique has been evaluated for over 23,000 diversified simulated fault cases as well as 14 recorded real fault events. The performance of the proposed technique remains consistent under Current Transformer (CT) saturation as well as different amount and direction of power flow. Moreover, suitability to different power system network has also been studied. Also, faults having fault current less than pre-fault conditions have been detected accurately. The results obtained suggest that it is able to detect faulty phases as well as classify faults within quarter-cycle from the inception of fault with impeccable accuracy. Besides, as modern digital relays have been already equipped with phasor computation facility, phasor-based technique can be easily incorporated with relative ease. At last, a comparative evaluation suggests its superiority in terms of fault classification accuracy, fault detection time, diversify fault scenarios and computational requirement among other existing techniques.

Publisher

Walter de Gruyter GmbH

Subject

Energy Engineering and Power Technology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3