Design optimization of permanent magnet synchronous motor using Taguchi method and experimental validation

Author:

Gope Deepayan1ORCID,Goel Sandeep Kumar1

Affiliation:

1. Department of Electrical Engineering , College of Technology, G B Pant University of Agriculture and Technology , Pantnagar , India

Abstract

Abstract The critical dimensions of magnet and its positional parameters in a permanent magnet synchronous motor (PMSM) are optimized using Taguchi method. L16 Orthogonal Array (OA) was used in Taguchi method to optimize the magnet width w and thickness t, and magnet position parameters i.e., D1, O1, and Rib. Using the D-optimal design criterion, 52 data points for five factors were selected for optimization of power factor and efficiency using response surface methodology to perform the sensitivity analysis. Regression model for efficiency and power factor are modeled using analysis of variance results. A 1.07 kW capacity PMSM was designed based on the optimized parameters and making use of efficient computational resource, i.e., RMxprt tool of the ANSYS Maxwell software and drive system in ANSYS Simplorer for real time results and performance study. The performance of PMSM in terms of line current, load torque, and efficiency has been verified with the experimental results and the efficiency data available in literature. The results were found to be in a good agreement. Confirmation test results showed that the Taguchi method is very successful in the optimization of permanent magnet synchronous motor dimensions.

Publisher

Walter de Gruyter GmbH

Subject

Energy Engineering and Power Technology

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Research on Permanent Magnet Brushless DC Motor Based on Bonded Magnets;Journal of Electrical Engineering & Technology;2024-08-15

2. A Robust Speed Controller Design for PMSM Using $\text{PI}^\lambda \mathrm{D}^{\mu}$ Controllers;2024 47th International Conference on Telecommunications and Signal Processing (TSP);2024-07-10

3. Design, scalable construction, and test of optimal linear Halbach arrays for mobile applications;Journal of Magnetism and Magnetic Materials;2024-04

4. A 12/7 Segmented Outer Rotor FSPM Motor with Improved Performance;2023 3rd International Conference on Electrical Machines and Drives (ICEMD);2023-12-20

5. DESIGN OF AN ELECTRIC DRIVE MODEL WITH SUPPORT FOR CA SYSTEMS;MM Science Journal;2023-06-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3