Novel models of power system components for implicit solution of the adjusted power flow problem

Author:

Damodhar Sunil S.1ORCID

Affiliation:

1. Indian Institute of Technology Madras , Chennai , Tamil Nadu , India

Abstract

Abstract The solution of the adjusted power flow problem involves handling power system components whose control characteristics possess operational limits. Examples include generator reactive power limits, tap-changing and phase-shifting transformers, and FACTS devices. While the conventional method involves checking for limit violations in an outer loop drawn around the unadjusted power flow problem being solved by the Newton-Raphson (NR) method, for iterative processes, it is desirable to have smooth, continuously differentiable models implicitly handled within a single loop. A novel formulation for a subset of devices is presented for implicit handling within power flow. The steady state characteristics of tap-changing and phase-shifting transformers, and FACTS devices SVC and STATCOM, can be described using the “cut function”, a piecewise linear function traditionally employed in neural networks. A new approximation of the cut function is used for formulating novel equations describing the steady state characteristics. An augmented set of equations is formed and solved by the NR method, eliminating the need of an outer loop. The efficacy of the proposed method is demonstrated by employing it for plotting bus voltage profiles and determining maximum loadability of test systems. Comparisons with the conventional method show that significant savings in computation can be achieved.

Publisher

Walter de Gruyter GmbH

Subject

Energy Engineering and Power Technology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3