Author:
Liu Cheng,Cai Guowei,Yang Deyou,Sun Zhenglong
Abstract
Abstract
In this paper, a robust online approach based on wavelet transform and matrix pencil (WTMP) is proposed to extract the dominant oscillation mode and parameters (frequency, damping, and mode shape) of a power system from wide-area measurements. For accurate and robust extraction of parameters, WTMP is verified as an effective identification algorithm for output-only modal analysis. First, singular value decomposition (SVD) is used to reduce the covariance signals obtained by natural excitation technique. Second, the orders and range of the corresponding frequency are determined by SVD from positive power spectrum matrix. Finally, the modal parameters are extracted from each mode of reduced signals using the matrix pencil algorithm in different frequency ranges. Compared with the original algorithm, the advantage of the proposed method is that it reduces computation data size and can extract mode shape. The effectiveness of the scheme, which is used for accurate extraction of the dominant oscillation mode and its parameters, is thoroughly studied and verified using the response signal data generated from 4-generator 2-area and 16-generator 5-area test systems.
Funder
National Natural Science Foundation of China
Subject
Energy Engineering and Power Technology
Reference48 articles.
1. The natural excitation technique NExT for modal parameter extraction from operating wind turbines;James,1993
2. Power oscillation flow study of electric power systems;Electr Power Energy Syst,Apr.1995
3. Spectral monitoring of power system dynamic performances;IEEE Trans Power Syst,1993
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献