MAPE - An Alternative Fitness Metric for Prony Analysis of Power System Signals

Author:

Rao KrishnaORCID,Shubhanga K.N

Abstract

Abstract Phasor Measurement Units have facilitated tracking of oscillations in power system response signals. This has provided an impetus for identifying unstable component modes directly from oscillatory signals. Prony analysis, the earliest method proposed for this purpose, throws up some trivial modes. These not only distract the analyzer but also prolong processing time thereby delaying corrective action. Hence the fitness metric chosen should serve to minimize the number of trivial modes. The conventional fitness metric is Signal-to-Noise Ratio (SNR), which is actually Signal-to- Estimation error Ratio (SER). This paper proposes that Mean Absolute Percentage Error (MAPE) can also serve well as a fitness metric. It is shown through case studies carried out on well-known four-machine power system that there are a few cases where MAPE performs better than SER while in some instances SER works better. This inference is verified even in the presence of measurement noise. Hence a novel fitness metric is proposed combining MAPE with SER. Case studies on simulated signals obtained from New England-power system prove that this novel metric can achieve considerable reduction in processing time. Besides, an exponential binary search has been suggested for determining the optimal model order in minimum number of iterations.

Publisher

Walter de Gruyter GmbH

Subject

Energy Engineering and Power Technology

Reference58 articles.

1. Estimation of interarea modes in large power systems;Int J Electr Power Energy Syst,2013

2. Essai experimental at analytique etc;J de L’Ecole Polytechnique,1795

3. The matrix pencil for power system modal extraction;IEEE Trans Power Syst,2005

4. Characteristics of identifying linear dynamic models from impulse response data using prony analysis;Pacific Northwest Laboratory Report,1992

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3