Dynamic load prediction of charging piles for energy storage electric vehicles based on Space-time constraints in the internet of things environment

Author:

Zhou Yusong1ORCID

Affiliation:

1. CCCC Highway Consultants Co., Ltd. , Beijing 100010 , China

Abstract

Abstract This paper puts forward the dynamic load prediction of charging piles of energy storage electric vehicles based on time and space constraints in the Internet of Things environment, which can improve the load prediction effect of charging piles of electric vehicles and solve the problems of difficult power grid control and low power quality caused by the randomness of charging loads in time and space. After constructing a traffic road network model based on the Internet of Things, a travel chain model with different complexity and an electric vehicle charging model, the travel chain is randomly extracted. With the shortest travel time as a constraint, combined with the traffic road network model based on the Internet of Things, the travel route and travel time are determined. According to the State of Charge (SOC) and the travel destination, the location and charging time of the energy storage electric vehicle charging pile are determined. After obtaining the time-space distribution information of the energy storage electric vehicle charging pile at different times and in different regions, it is used as the input of the deep multi-step time-space dynamic neural network, and the network output is the dynamic electric vehicle charging pile. The experimental results show that this method can realize the dynamic load prediction of electric vehicle charging piles. When the number of stacking units is 11, the indexes of Mean Absolute Percentage Error (MAPE) and Root Mean Square Error (RMSE) are the lowest and the index of R 2 is the largest. The load of charging piles in residential areas and work areas exists in the morning and evening peak hours, while the load fluctuation of charging piles in other areas presents a decentralized change law; The higher the complexity of regional traffic network, the greater the load of electric vehicle charging piles in the morning rush hour.

Publisher

Walter de Gruyter GmbH

Subject

Energy Engineering and Power Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3