Author:
Konnerth Johannes,Gindl Wolfgang
Abstract
Abstract
The elastic modulus, hardness, and creep factor of wood cell walls in the interphase region of four different adhesive bonds were determined by nanoindentation. In comparison with reference cell walls unaffected by adhesive, interphase cell walls from melamine-urea-formaldehyde (MUF) and phenol-resorcinol-formaldehyde (PRF) adhesive bonds showed improved hardness and reduced creep, as well as improved elastic modulus in the case of MUF. In contrast, cell walls from the interphase region in polyvinylacetate (PVAc) and one-component polyurethane (PUR) bonds showed more creep, but lower elastic modulus and hardness than the reference. Considering the different cell-wall penetration behaviour of the adhesive polymers studied here, it is concluded that damage and loss of elastic modulus to surface cells occurring during the machining of wood is recovered in MUF and PRF bond lines, whereas damage of cell walls persists in PVAc and PUR bond lines.
Cited by
89 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献