Affiliation:
1. Unidade Acadêmica de Matemática , Universidade Federal de Campina Grande , CEP: 58429-900 Campina Grande - PB , Brazil
Abstract
Abstract
This paper is concerned with the existence of a heteroclinic solution for the following class of elliptic equations:
-
Δ
u
+
A
(
ϵ
x
,
y
)
V
′
(
u
)
=
0
in
Ω
,
-\Delta{u}+A(\epsilon x,y)V^{\prime}(u)=0\quad\mbox{in }\Omega,
where
ϵ
>
0
{\epsilon>0}
,
Ω
=
ℝ
×
𝒟
{\Omega=\mathbb{R}\times\mathcal{D}}
is an infinite cylinder of
ℝ
N
{\mathbb{R}^{N}}
with
N
≥
2
{N\geq 2}
. Here, we consider a large class of potentials V that includes the Ginzburg–Landau potential
V
(
t
)
=
(
t
2
-
1
)
2
{V(t)=(t^{2}-1)^{2}}
and two geometric conditions on the function A. In the first condition we assume that A is asymptotic at infinity to a periodic function, while in the second one A satisfies
0
<
A
0
=
A
(
0
,
y
)
=
inf
(
x
,
y
)
∈
Ω
A
(
x
,
y
)
<
lim inf
|
(
x
,
y
)
|
→
+
∞
A
(
x
,
y
)
=
A
∞
<
∞
for all
y
∈
𝒟
.
0<A_{0}=A(0,y)=\inf_{(x,y)\in\Omega}A(x,y)<\liminf_{|(x,y)|\to+\infty}A(x,y)=A%
_{\infty}<\infty\quad\text{for all }y\in\mathcal{D}.
Subject
General Mathematics,Statistical and Nonlinear Physics
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献