Affiliation:
1. Dipartimento di Scienze Pure e Applicate (DiSPeA) , Università degli Studi di Urbino “Carlo Bo” , Piazza della Repubblica 13, 61029 Urbino (Pesaro e Urbino) , Italy
Abstract
Abstract
In this paper, we investigate the existence of multiple solutions for the following two fractional problems:
{
(
-
Δ
Ω
)
s
u
-
λ
u
=
f
(
x
,
u
)
in
Ω
,
u
=
0
in
∂
Ω
and
{
(
-
Δ
ℝ
N
)
s
u
-
λ
u
=
f
(
x
,
u
)
in
Ω
,
u
=
0
in
ℝ
N
∖
Ω
,
\left\{\begin{aligned} \displaystyle(-\Delta_{\Omega})^{s}u-\lambda u&%
\displaystyle=f(x,u)&&\displaystyle\text{in }\Omega,\\
\displaystyle u&\displaystyle=0&&\displaystyle\text{in }\partial\Omega\end{%
aligned}\right.\qquad\text{and}\qquad\left\{\begin{aligned} \displaystyle(-%
\Delta_{\mathbb{R}^{N}})^{s}u-\lambda u&\displaystyle=f(x,u)&&\displaystyle%
\text{in }\Omega,\\
\displaystyle u&\displaystyle=0&&\displaystyle\text{in }\mathbb{R}^{N}%
\setminus\Omega,\end{aligned}\right.
where
s
∈
(
0
,
1
)
{s\in(0,1)}
,
N
>
2
s
{N>2s}
, Ω is a smooth bounded domain of
ℝ
N
{\mathbb{R}^{N}}
, and
f
:
Ω
¯
×
ℝ
→
ℝ
{f:\bar{\Omega}\times\mathbb{R}\to\mathbb{R}}
is a superlinear continuous function which does not satisfy the well-known Ambrosetti–Rabinowitz condition. Here
(
-
Δ
Ω
)
s
{(-\Delta_{\Omega})^{s}}
is the spectral Laplacian and
(
-
Δ
ℝ
N
)
s
{(-\Delta_{\mathbb{R}^{N}})^{s}}
is the fractional Laplacian in
ℝ
N
{\mathbb{R}^{N}}
. By applying variational theorems of mixed type due to Marino and Saccon and the Linking Theorem, we prove the existence of multiple solutions for the above problems.
Subject
General Mathematics,Statistical and Nonlinear Physics
Reference34 articles.
1. N. Abatangelo and E. Valdinoci,
Getting acquainted with the fractional Laplacian,
preprint (2017), https://arxiv.org/abs/1710.11567.
2. A. Ambrosetti and P. H. Rabinowitz,
Dual variational methods in critical point theory and applications,
J. Funct. Anal. 14 (1973), 349–381.
10.1016/0022-1236(73)90051-7
3. V. Ambrosio,
An Ambrosetti–Prodi type-result for fractional spectral problems,
preprint (2017), https://arxiv.org/abs/1712.10295.
4. V. Ambrosio,
Nontrivial solutions for a fractional p-Laplacian problem via Rabier theorem,
Complex Var. Elliptic Equ. 62 (2017), no. 6, 838–847.
10.1080/17476933.2016.1245725
5. V. Ambrosio,
Periodic solutions for a superlinear fractional problem without the Ambrosetti–Rabinowitz condition,
Discrete Contin. Dyn. Syst. 37 (2017), no. 5, 2265–2284.
10.3934/dcds.2017099
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献