Affiliation:
1. School of Mathematical Sciences , Beijing Normal University , Beijing 100875 , P. R. China
Abstract
Abstract
In line with the Trudinger–Moser inequality in the fractional Sobolev–Slobodeckij space due to
[S. Iula, A note on the Moser–Trudinger inequality in Sobolev–Slobodeckij spaces in dimension one,
Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl. 28 2017, 4, 871–884]
and
[E. Parini and B. Ruf,
On the Moser–Trudinger inequality in fractional Sobolev–Slobodeckij spaces,
Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl. 29 2018, 2, 315–319],
we establish a new version of the Trudinger–Moser inequality in
W
s
,
p
(
ℝ
N
)
{W^{s,p}(\mathbb{R}^{N})}
. Define
∥
u
∥
1
,
τ
=
(
[
u
]
W
s
,
p
(
ℝ
N
)
p
+
τ
∥
u
∥
p
p
)
1
p
for any
τ
>
0
.
\lVert u\rVert_{1,\tau}=\bigl{(}[u]^{p}_{W^{s,p}(\mathbb{R}^{N})}+\tau\lVert u%
\rVert_{p}^{p}\bigr{)}^{\frac{1}{p}}\quad\text{for any }\tau>0.
There holds
sup
u
∈
W
s
,
p
(
ℝ
N
)
,
∥
u
∥
1
,
τ
≤
1
∫
ℝ
N
Φ
N
,
s
(
α
|
u
|
N
N
-
s
)
<
+
∞
,
\sup_{u\in W^{s,p}(\mathbb{R}^{N}),\lVert u\rVert_{1,\tau}\leq 1}\int_{\mathbb%
{R}^{N}}\Phi_{N,s}\bigl{(}\alpha\lvert u\rvert^{\frac{N}{N-s}}\bigr{)}<+\infty,
where
s
∈
(
0
,
1
)
{s\in(0,1)}
,
s
p
=
N
{sp=N}
,
α
∈
[
0
,
α
*
)
{\alpha\in[0,\alpha_{*})}
and
Φ
N
,
s
(
t
)
=
e
t
-
∑
i
=
0
j
p
-
2
t
j
j
!
.
\Phi_{N,s}(t)=e^{t}-\sum_{i=0}^{j_{p}-2}\frac{t^{j}}{j!}.
Applying this result, we establish sufficient conditions for the existence of weak solutions to the following quasilinear nonhomogeneous fractional-Laplacian equation:
(
-
Δ
)
p
s
u
(
x
)
+
V
(
x
)
|
u
(
x
)
|
p
-
2
u
(
x
)
=
f
(
x
,
u
)
+
ε
h
(
x
)
in
ℝ
N
,
(-\Delta)_{p}^{s}u(x)+V(x)\lvert u(x)\rvert^{p-2}u(x)=f(x,u)+\varepsilon h(x)%
\quad\text{in }\mathbb{R}^{N},
where
V
(
x
)
{V(x)}
has a positive lower bound,
f
(
x
,
t
)
{f(x,t)}
behaves like
e
α
|
t
|
N
/
(
N
-
s
)
{e^{\alpha\lvert t\rvert^{N/(N-s)}}}
,
h
∈
(
W
s
,
p
(
ℝ
N
)
)
*
{h\in(W^{s,p}(\mathbb{R}^{N}))^{*}}
and
ε
>
0
{\varepsilon>0}
.
Moreover, we also derive a weak solution with negative energy.
Funder
National Natural Science Foundation of China
Subject
General Mathematics,Statistical and Nonlinear Physics
Reference65 articles.
1. S. Adachi and K. Tanaka,
Trudinger type inequalities in 𝐑N\mathbf{R}^{N} and their best exponents,
Proc. Amer. Math. Soc. 128 (2000), no. 7, 2051–2057.
2. D. R. Adams,
A sharp inequality of J. Moser for higher order derivatives,
Ann. of Math. (2) 128 (1988), no. 2, 385–398.
10.2307/1971445
3. Adimurthi and Y. Yang,
An interpolation of Hardy inequality and Trundinger–Moser inequality in ℝN\mathbb{R}^{N} and its applications,
Int. Math. Res. Not. IMRN 2010 (2010), no. 13, 2394–2426.
4. F. J. Almgren, Jr. and E. H. Lieb,
Symmetric decreasing rearrangement is sometimes continuous,
J. Amer. Math. Soc. 2 (1989), no. 4, 683–773.
10.1090/S0894-0347-1989-1002633-4
5. C. O. Alves and G. M. Figueiredo,
On multiplicity and concentration of positive solutions for a class of quasilinear problems with critical exponential growth in ℝN\mathbb{R}^{N},
J. Differential Equations 246 (2009), no. 3, 1288–1311.
Cited by
37 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献