Trudinger–Moser Inequalities in Fractional Sobolev–Slobodeckij Spaces and Multiplicity of Weak Solutions to the Fractional-Laplacian Equation

Author:

Zhang Caifeng1

Affiliation:

1. School of Mathematical Sciences , Beijing Normal University , Beijing 100875 , P. R. China

Abstract

Abstract In line with the Trudinger–Moser inequality in the fractional Sobolev–Slobodeckij space due to [S. Iula, A note on the Moser–Trudinger inequality in Sobolev–Slobodeckij spaces in dimension one, Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl. 28 2017, 4, 871–884] and [E. Parini and B. Ruf, On the Moser–Trudinger inequality in fractional Sobolev–Slobodeckij spaces, Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl. 29 2018, 2, 315–319], we establish a new version of the Trudinger–Moser inequality in W s , p ( N ) {W^{s,p}(\mathbb{R}^{N})} . Define u 1 , τ = ( [ u ] W s , p ( N ) p + τ u p p ) 1 p for any  τ > 0 . \lVert u\rVert_{1,\tau}=\bigl{(}[u]^{p}_{W^{s,p}(\mathbb{R}^{N})}+\tau\lVert u% \rVert_{p}^{p}\bigr{)}^{\frac{1}{p}}\quad\text{for any }\tau>0. There holds sup u W s , p ( N ) , u 1 , τ 1 N Φ N , s ( α | u | N N - s ) < + , \sup_{u\in W^{s,p}(\mathbb{R}^{N}),\lVert u\rVert_{1,\tau}\leq 1}\int_{\mathbb% {R}^{N}}\Phi_{N,s}\bigl{(}\alpha\lvert u\rvert^{\frac{N}{N-s}}\bigr{)}<+\infty, where s ( 0 , 1 ) {s\in(0,1)} , s p = N {sp=N} , α [ 0 , α * ) {\alpha\in[0,\alpha_{*})} and Φ N , s ( t ) = e t - i = 0 j p - 2 t j j ! . \Phi_{N,s}(t)=e^{t}-\sum_{i=0}^{j_{p}-2}\frac{t^{j}}{j!}. Applying this result, we establish sufficient conditions for the existence of weak solutions to the following quasilinear nonhomogeneous fractional-Laplacian equation: ( - Δ ) p s u ( x ) + V ( x ) | u ( x ) | p - 2 u ( x ) = f ( x , u ) + ε h ( x ) in  N , (-\Delta)_{p}^{s}u(x)+V(x)\lvert u(x)\rvert^{p-2}u(x)=f(x,u)+\varepsilon h(x)% \quad\text{in }\mathbb{R}^{N}, where V ( x ) {V(x)} has a positive lower bound, f ( x , t ) {f(x,t)} behaves like e α | t | N / ( N - s ) {e^{\alpha\lvert t\rvert^{N/(N-s)}}} , h ( W s , p ( N ) ) * {h\in(W^{s,p}(\mathbb{R}^{N}))^{*}} and ε > 0 {\varepsilon>0} . Moreover, we also derive a weak solution with negative energy.

Funder

National Natural Science Foundation of China

Publisher

Walter de Gruyter GmbH

Subject

General Mathematics,Statistical and Nonlinear Physics

Reference65 articles.

1. S. Adachi and K. Tanaka, Trudinger type inequalities in 𝐑N\mathbf{R}^{N} and their best exponents, Proc. Amer. Math. Soc. 128 (2000), no. 7, 2051–2057.

2. D. R. Adams, A sharp inequality of J. Moser for higher order derivatives, Ann. of Math. (2) 128 (1988), no. 2, 385–398. 10.2307/1971445

3. Adimurthi and Y. Yang, An interpolation of Hardy inequality and Trundinger–Moser inequality in ℝN\mathbb{R}^{N} and its applications, Int. Math. Res. Not. IMRN 2010 (2010), no. 13, 2394–2426.

4. F. J. Almgren, Jr. and E. H. Lieb, Symmetric decreasing rearrangement is sometimes continuous, J. Amer. Math. Soc. 2 (1989), no. 4, 683–773. 10.1090/S0894-0347-1989-1002633-4

5. C. O. Alves and G. M. Figueiredo, On multiplicity and concentration of positive solutions for a class of quasilinear problems with critical exponential growth in ℝN\mathbb{R}^{N}, J. Differential Equations 246 (2009), no. 3, 1288–1311.

Cited by 37 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3