Affiliation:
1. Department of Mathematics , School of Science and Engineering , Waseda University , 3-4-1 Ohkubo, Shinjuku-ku , Tokyo 169-8555 , Japan
Abstract
Abstract
We study the existence of radially symmetric solutions of the following nonlinear scalar field
equations in
ℝ
N
{\mathbb{R}^{N}}
(
N
≥
2
{N\geq 2}
):
${(*)_{m}}$
{
-
Δ
u
=
g
(
u
)
-
μ
u
in
ℝ
N
,
∥
u
∥
L
2
(
ℝ
N
)
2
=
m
,
u
∈
H
1
(
ℝ
N
)
,
\displaystyle\begin{cases}-\Delta u=g(u)-\mu u\quad\text{in }\mathbb{R}^{N},%
\cr\lVert u\rVert_{L^{2}(\mathbb{R}^{N})}^{2}=m,\cr u\in H^{1}(\mathbb{R}^{N})%
,\end{cases}
where
g
(
ξ
)
∈
C
(
ℝ
,
ℝ
)
{g(\xi)\in C(\mathbb{R},\mathbb{R})}
,
m
>
0
{m>0}
is a given constant and
μ
∈
ℝ
{\mu\in\mathbb{R}}
is a Lagrange multiplier.
We introduce a new approach using a Lagrange formulation of problem
(
*
)
m
{(*)_{m}}
.
We develop a new deformation argument under a new version of the Palais–Smale condition.
For a general class of nonlinearities related to [H. Berestycki and P.-L. Lions, Nonlinear scalar field equations. I: Existence of a ground state,
Arch. Ration. Mech. Anal. 82 (1983), no. 4, 313–345], [H. Berestycki and P.-L. Lions,
Nonlinear scalar field equations. II. Existence of infinitely many solutions,
Arch. Ration. Mech. Anal. 82 (1983), no. 4, 347–375], [J. Hirata, N. Ikoma and K. Tanaka,
Nonlinear scalar field equations in
ℝ
N
{\mathbb{R}^{N}}
: Mountain pass and symmetric mountain
pass approaches, Topol. Methods Nonlinear Anal. 35 (2010), no. 2, 253–276],
it enables us to apply minimax argument for
L
2
{L^{2}}
constraint problems and we show the existence
of infinitely many solutions as well as mountain pass characterization of a minimizing solution
of the problem
inf
{
∫
ℝ
N
1
2
|
∇
u
|
2
-
G
(
u
)
d
x
:
∥
u
∥
L
2
(
ℝ
N
)
2
=
m
}
,
G
(
ξ
)
=
∫
0
ξ
g
(
τ
)
𝑑
τ
.
\inf\Bigg{\{}\int_{\mathbb{R}^{N}}{1\over 2}|{\nabla u}|^{2}-G(u)\,dx:\lVert u%
\rVert_{L^{2}(\mathbb{R}^{N})}^{2}=m\Bigg{\}},\quad G(\xi)=\int_{0}^{\xi}g(%
\tau)\,d\tau.
Funder
Japan Society for the Promotion of Science
Subject
General Mathematics,Statistical and Nonlinear Physics
Reference19 articles.
1. A. Azzollini, P. d’Avenia and A. Pomponio,
Multiple critical points for a class of nonlinear functionals,
Ann. Mat. Pura Appl. (4) 190 (2011), no. 3, 507–523.
10.1007/s10231-010-0160-3
2. T. Bartsch and S. de Valeriola,
Normalized solutions of nonlinear Schrödinger equations,
Arch. Math. (Basel) 100 (2013), no. 1, 75–83.
10.1007/s00013-012-0468-x
3. H. Berestycki, T. Gallouët and O. Kavian,
Équations de champs scalaires euclidiens non linéaires dans le plan,
C. R. Acad. Sci. Paris Sér. I Math. 297 (1983), no. 5, 307–310;
and Publications du Laboratoire d’Analyse Numerique, Université de Paris VI, Paris, 1984.
4. H. Berestycki and P.-L. Lions,
Nonlinear scalar field equations. I: Existence of a ground state,
Arch. Ration. Mech. Anal. 82 (1983), no. 4, 313–345.
10.1007/BF00250555
5. H. Berestycki and P.-L. Lions,
Nonlinear scalar field equations. II: Existence of infinitely many solutions,
Arch. Ration. Mech. Anal. 82 (1983), no. 4, 347–375.
10.1007/BF00250556
Cited by
55 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献