Nonlinear Scalar Field Equations with L 2 Constraint: Mountain Pass and Symmetric Mountain Pass Approaches

Author:

Hirata Jun1,Tanaka Kazunaga1

Affiliation:

1. Department of Mathematics , School of Science and Engineering , Waseda University , 3-4-1 Ohkubo, Shinjuku-ku , Tokyo 169-8555 , Japan

Abstract

Abstract We study the existence of radially symmetric solutions of the following nonlinear scalar field equations in N {\mathbb{R}^{N}} ( N 2 {N\geq 2} ): ${(*)_{m}}$ { - Δ u = g ( u ) - μ u in  N , u L 2 ( N ) 2 = m , u H 1 ( N ) , \displaystyle\begin{cases}-\Delta u=g(u)-\mu u\quad\text{in }\mathbb{R}^{N},% \cr\lVert u\rVert_{L^{2}(\mathbb{R}^{N})}^{2}=m,\cr u\in H^{1}(\mathbb{R}^{N})% ,\end{cases} where g ( ξ ) C ( , ) {g(\xi)\in C(\mathbb{R},\mathbb{R})} , m > 0 {m>0} is a given constant and μ {\mu\in\mathbb{R}} is a Lagrange multiplier. We introduce a new approach using a Lagrange formulation of problem ( * ) m {(*)_{m}} . We develop a new deformation argument under a new version of the Palais–Smale condition. For a general class of nonlinearities related to [H. Berestycki and P.-L. Lions, Nonlinear scalar field equations. I: Existence of a ground state, Arch. Ration. Mech. Anal. 82 (1983), no. 4, 313–345], [H. Berestycki and P.-L. Lions, Nonlinear scalar field equations. II. Existence of infinitely many solutions, Arch. Ration. Mech. Anal. 82 (1983), no. 4, 347–375], [J. Hirata, N. Ikoma and K. Tanaka, Nonlinear scalar field equations in N {\mathbb{R}^{N}} : Mountain pass and symmetric mountain pass approaches, Topol. Methods Nonlinear Anal. 35 (2010), no. 2, 253–276], it enables us to apply minimax argument for L 2 {L^{2}} constraint problems and we show the existence of infinitely many solutions as well as mountain pass characterization of a minimizing solution of the problem inf { N 1 2 | u | 2 - G ( u ) d x : u L 2 ( N ) 2 = m } , G ( ξ ) = 0 ξ g ( τ ) 𝑑 τ . \inf\Bigg{\{}\int_{\mathbb{R}^{N}}{1\over 2}|{\nabla u}|^{2}-G(u)\,dx:\lVert u% \rVert_{L^{2}(\mathbb{R}^{N})}^{2}=m\Bigg{\}},\quad G(\xi)=\int_{0}^{\xi}g(% \tau)\,d\tau.

Funder

Japan Society for the Promotion of Science

Publisher

Walter de Gruyter GmbH

Subject

General Mathematics,Statistical and Nonlinear Physics

Cited by 55 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. New critical point theorem and infinitely many normalized small-magnitude solutions of mass supercritical Schrödinger equations;Nonlinear Differential Equations and Applications NoDEA;2024-08-08

2. Normalized solutions for nonlinear Schrödinger equations on graphs;Journal of Mathematical Analysis and Applications;2024-08

3. Normalized Solutions for Schrödinger Equations with Local Superlinear Nonlinearities;Qualitative Theory of Dynamical Systems;2024-06-18

4. Radial symmetric normalized solutions for a singular elliptic equation;Applied Mathematics Letters;2024-06

5. Multiplicity of Normalized Solutions for Schrödinger Equations;Bulletin of the Malaysian Mathematical Sciences Society;2024-05-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3