Multiplicity of Solutions for Fractional Hamiltonian Systems with Liouville-Weyl Fractional Derivatives

Author:

Mendez Cruz G. Amado1,Torres Ledesma César E.1

Affiliation:

1. Departamento Académico de Matemáticas Universidad Nacional de Trujillo Av. Juan Pablo Segundo s/n, Trujillo, PERU

Abstract

Abstract In this paper, we investigate the existence of infinitely many solutions for the following fractional Hamiltonian systems: tDα (−∞Dα t u(t)) + L(t)u(t) = ∇W(t, u(t)), (0.1) u ∈ Hα(ℝ,ℝN), where α ∈ (1/2, 1), t ∈ ℝ, u ∈ ℝn, L ∈ C(ℝ,ℝn2 ) is a symmetric and positive definite matrix for all t ∈ ℝ, W ∈ C1(ℝ × ℝn,ℝ), and ∇W is the gradient of W at u. The novelty of this paper is that, assuming there exists l ∈ C(ℝ,ℝ) such that (L(t)u, u) ≥ l(t)|u|2 for all t ∈ ℝ, u ∈ ℝn and the following conditions on l: inf t ∈ ℝ l(t) > 0 and there exists r0 > 0 such that, for any M >0 m({t ∈ (y − r0, y + r0)/ l(t) ≤ M}) → 0 as |y| →∞ are satisfied and W is of subquadratic growth as |u| → +∞, we show that (0.1) possesses infinitely many solutions via the genus properties in the critical theory. Recent results in Z. Zhang and R. Yuan [24] are significantly improved.

Publisher

Walter de Gruyter GmbH

Subject

Applied Mathematics,Analysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3