Contractive Local Adaptive Smoothing Based on Dörfler’s Marking in A-Posteriori-Steered p-Robust Multigrid Solvers

Author:

Miraçi Ani1,Papež Jan2,Vohralík Martin1

Affiliation:

1. Inria , 2 rue Simone Iff, 75589 Paris ; and CERMICS, Ecole des Ponts, 77455 Marne-la-Vallée , France

2. Institute of Mathematics , Czech Academy of Sciences , Žitná 25, 115 67 Prague , Czech Republic

Abstract

Abstract In this work, we study a local adaptive smoothing algorithm for a-posteriori-steered p-robust multigrid methods. The solver tackles a linear system which is generated by the discretization of a second-order elliptic diffusion problem using conforming finite elements of polynomial order p 1 {p\geq 1} . After one V-cycle (“full-smoothing” substep) of the solver of [A. Miraçi, J. Papež, and M. Vohralík, A-posteriori-steered p-robust multigrid with optimal step-sizes and adaptive number of smoothing steps, SIAM J. Sci. Comput. 2021, 10.1137/20M1349503], we dispose of a reliable, efficient, and localized estimation of the algebraic error. We use this existing result to develop our new adaptive algorithm: thanks to the information of the estimator and based on a bulk-chasing criterion, cf. [W. Dörfler, A convergent adaptive algorithm for Poisson’s equation, SIAM J. Numer. Anal. 33 1996, 3, 1106–1124], we mark patches of elements with increased estimated error on all levels. Then, we proceed by a modified and cheaper V-cycle (“adaptive-smoothing” substep), which only applies smoothing in the marked regions. The proposed adaptive multigrid solver picks autonomously and adaptively the optimal step-size per level as in our previous work but also the type of smoothing per level (weighted restricted additive or additive Schwarz) and concentrates smoothing to marked regions with high error. We prove that, under a numerical condition that we verify in the algorithm, each substep (full and adaptive) contracts the error p-robustly, which is confirmed by numerical experiments. Moreover, the proposed algorithm behaves numerically robustly with respect to the number of levels as well as to the diffusion coefficient jump for a uniformly-refined hierarchy of meshes.

Publisher

Walter de Gruyter GmbH

Subject

Applied Mathematics,Computational Mathematics,Numerical Analysis

Reference35 articles.

1. A. Anciaux-Sedrakian, L. Grigori, Z. Jorti, J. Papež and S. Yousef, Adaptive solution of linear systems of equations based on a posteriori error estimators, Numer. Algorithms 84 (2020), no. 1, 331–364.

2. D. Bai and A. Brandt, Local mesh refinement multilevel techniques, SIAM J. Sci. Statist. Comput. 8 (1987), no. 2, 109–134.

3. C. Bernardi and Y. Maday, Spectral methods, Handbook of Numerical Analysis. Vol. V, North-Holland, Amsterdam (1997), 209–485.

4. S. C. Brenner and L. R. Scott, The Mathematical Theory of Finite Element Methods, 3rd ed., Texts Appl. Math. 15, Springer, New York, 2008.

5. M. Brezina, R. Falgout, S. MacLachlan, T. Manteuffel, S. McCormick and J. Ruge, Adaptive algebraic multigrid, SIAM J. Sci. Comput. 27 (2006), no. 4, 1261–1286.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Reliable Methods of Mathematical Modeling;Computational Methods in Applied Mathematics;2021-03-11

2. A-Posteriori-Steered $p$-Robust Multigrid with Optimal Step-Sizes and Adaptive Number of Smoothing Steps;SIAM Journal on Scientific Computing;2021-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3